

HI-6210

Fully Integrated MIL-STD-1553 BC/RT/MT

HI-6210, HI-6211, HI-6212 Families

December 2019

DS6210 Rev. E

HOLT INTEGRATED CIRCUITS 2

1. Overview

The HI-6210/11/12 family is a fully integrated and dual redundant MIL-STD-1553 BC/RT/MT interface solution which includes 1553 protocol, SRAM and dual transceivers in single plastic BGA and ceramic package configurations. The devices are direct pin compatible drop-in replacements for the Data Device Corporation (DDC[®]) Micro-ACE[®] TE and Mini-ACE[®] Mark3 Families of MIL-STD-1553 Terminals.

1.1. Bus Controller

The BC is a programmable message-sequencing engine programmed using a set of 20 instruction op codes. It greatly reduces the host's processing workload by autonomously supporting multi-frame message scheduling, message retry schemes, storage of message data in on-chip RAM, asynchronous message insertion and status/error reporting. The Enhanced BC mode also includes a General Purpose Queue and user-defined interrupts to further enhance host communication.

1.2. Remote Terminal

The RT has been fully validated by a recognized independent third party. RT memory management options include single, double, and 2 circular buffer modes for individual subaddresses. The RT performs comprehensive error checking including word and format validation and checks for various transfer errors. The RT supports flexible interrupt conditions, command illegalization and a programmable busy bit by subaddress. In addition, the HI-6210PB, HI-6211PB and HI-6212PB devices have an "auto-boot" feature necessary for MIL-STD-1760 compliance, whereby the terminal can initialize as an online RT with the busy bit set following power turn-on.

1.2.1. Simple System Remote Terminal (SSRT) Mode

The HI-6211PB devices may be operated in a simplified RT mode called Simple System Remote Terminal (SSRT) mode. The SSRT mode provides a low-cost MIL-STD-1553 Remote Terminal interface for a simple system that doesn't include a microprocessor, such as A/D and D/A converters, actuators, and other discrete I/O signals. SSRT mode is activated by strapping three balls to ground.

1.3. Monitor Terminal

The family supports three monitor modes including a word monitor mode, a selective message monitor mode and a combined RT/Monitor Mode. For new applications it is recommended to implement the selective message monitor mode. Selective Message Monitor allows monitoring of 1553 messages and provides the ability to filter based on RT address, T/\overline{R} bit and subaddress with no host processor intervention.

1.4. Host Processor Interface

Each device provides an 8/16-bit parallel host bus interface supporting a variety of processor configurations including shared RAM and DMA configurations. The host interface supports both non-multiplexed and multiplexed address/data buses, non-zero wait mode for interfacing to processor address/data buses, and zero wait mode for interfacing to microcontroller I/O ports.

Note: DDC[®], Mini-ACE®, Enhanced Mini-ACE®, Micro-ACE®, Mini-ACE® Mark3 and Total-ACE® are registered trademarks of Data Device Corporation, Bohemia, NY, USA. There is no affiliation between Data Device Corporation and Holt Integrated Circuits Inc.

1.5. Built in Test

The family provides an autonomous built-in self-test capability. The testing includes both RAM and protocol logic tests which may be initiated by the host processor.

1.6. Features

- Dual Redundant MIL-STD-1553A/B/1760 Channel
- BC, RT, MT, or RT/MT Modes
- RT only configuration available
- Supports Simple System RT Mode (HI-6211PB devices)
- 64Kx17 or 4Kx16 SRAM
- External RT Address Inputs
- MIL-STD-1760 RT "Auto Boot" (HI-6210PB, HI-6211PB and HI-6212PB devices)
- +3.3V Single Supply on select devices
- Built-in Self-Test
- Generic 8/16-bit Processor Interface
- -40°C to +85°C or -55°C to +125°C
 - No Limitations on transmit duty cycle
- 80-Pin Hermetic Gull Wing Package (HI-6210CQ and HI-6212CQ devices)
 - 22.4mm x 22.4mm x 3.6mm
- PBGA-324 (HI-6210PB, HI-6211PB and HI-6212PB devices)
 - 20.7mm x 20.7mm x 3.1mm

1.7. Application Benefits

- Simplified Board Design and Layout
- Third Party RT Validated
- Single Die for Improved Reliability
- Cost Effective Direct Drop-in Replacement for DDC[®] Mini-ACE[®] Mark3 and Micro-ACE[®] TE families
- Fully Software Compatible to DDC[®] ACE, Mini-ACE[®], Enhanced Mini-ACE[®], Micro-ACE[®], Mini-ACE[®] Mark3 and Total-ACE[®].

1.8. Cross Reference Guide

Holt P/N	DDC P/N
HI-62115PBxF	BU-64840R3-xxx
HI-62115PBx	BU-64840B3-xxx
HI-62113PBxF	BU-64843RC-xxx
HI-62113PBx	BU-64843BC-xxx
HI-62106PBx	BU-64860B4-xxx
HI-62105PBxF	BU-64860R3-xxx
HI-62105PBx	BU-64860B3-xxx
HI-62103PBxF	BU-64863RC-xxx
HI-62123PBx	BU-64743BC-xxx
HI-62123CQx	BU-64743GC-xxx
HI-62124CQx	BU-64743GD-xxx
HI-62125CQx	BU-64745G3-xxx
HI-62114CQx	BU-64843GD-xxx
HI-62105CQx	BU-64863G3-xxx
HI-62104CQx	BU-64863GD-xxx
HI-62103CQx	BU-64863GC-xxx

1.9. Block Diagram

2. Registers and Command/Status Words

Table 1 summarizes the device registers and corresponding addresses.

Hex Address	Access	Register Name				
0x0000	RD/WR	Interrupt Enable Register 1	0x0000			
0x0001	RD/WR	Configuration Register 1	0x0000			
0x0002	RD/WR	Configuration Register 2	0x0000			
0x0003	WR	Start/Reset Register	0x0000			
0x0003	RD	Non-Enhanced BC or RT Command Stack Pointer / Enhanced BC Instruction List Pointer Register	0x0000			
0x0004	RD/WR	BC Control Word / RT Subaddress Control Word Register	0x0000			
0x0005	RD/WR	Time Tag Register	0x0000			
0x0006	RD	Interrupt Status Register 1	0x0000			
0x0007	RD/WR	Configuration Register 3	0x0000			
0x0008	RD/WR	Configuration Register 4				
0x0009	RD/WR	Configuration Register 5				
0x000A	RD/WR	RT/Monitor Data Stack Address Register				
0x000B	RD	BC Frame Time Remaining Register				
0x000C	RD	BC Time Remaining to Next Message Register				
0x000D	RD/WR	Non-Enhanced BC Frame Time / Enhanced BC Initial Instruction Pointer / RT Last Command/MT Trigger Word Register	0x0000			
0x000E	RD	RT Status Word Register	0x0000			
0x000F	RD	RT BIT Word Register	0x0000			
0x0010	-	Test Mode Register 0				
0x0011	-	Test Mode Register 1				
0x0012	-	Test Mode Register 2				
0x0013	-	Test Mode Register 3				
0x0014	_	Test Mode Register 4	0x0000			
0x0015	_	Test Mode Register 5	0x0000			
0x0016	_	Test Mode Register 6				

Hex Address	Access	Register Name	Hard Reset Default
0x0017	-	Test Mode Register 7	0x0000
0x0018	RD/WR	Configuration Register 6	0x0000
0x0019	RD/WR	Configuration Register 7	0x0000
0x001A	-	Reserved	0x0000
0x001B	RD	3C Condition Code Register	
0x001B	WR	BC General Purpose Flag Register	0x0000
0x001C	RD	BIT Test Status Register	Note 2
0x001D	RD/WR	Interrupt Enable Register 2	0x0000
0x001E	RD	Interrupt Status Register 2	Note 2
0x001F	RD/WR	BC General Purpose Queue Pointer / RT-MT Interrupt Status Queue Pointer Register	0x0000

NOTES:

- 1. Bits SNGLEND, TXINHA, TXINHB, RTAD[4:0] and RTADP will reflect the logic values of their respective input pins.
- Following Built-in Self Test, registers 0x001C (BIT Test Status Register) and 0x001E (Interrupt Status Register 2) will be non-zero. The value of register 0x001C will depend on the result of the Built-in Self Test. In register 0x001E, bit 2, BIST, will be set to logic "1" following Built-in Self Test.

Interrupt Enable Register #1, Read/Write 0x0000 2.1.

Setting a respective bit below to logic "1" will cause an interrupt to be generated when the corresponding event occurs. The equivalent bit in Interrupt Status Register #1 will also be set to logic "1" regardless of whether the enable bit is set or not. Setting a respective bit below to logic "0" will disable (mask) the interrupt.

Bit No.	Mnemonic	R/W	Reset	Bit Description	
15 (MSB)		-	0	Reserved	
14	RAMPE	R/W	0	Set RAMPE to logic "1" to generate an interrupt when a RAM parity error occurs. Note: RAM PARITY ERROR must be set to logic "0" for 4K RAM device options, since there is no 17-bit RAM for these devices.	
13	тхто	R/W	0	Set TXTO to logic "1" to generate an interrupt when a transmitter timeout occurs.	
12	STKRO	R/W	0	Set STKRO to logic "1" to generate an interrupt when a command stack rollover occurs. When in BC Mode, this applies to the BC Command Stack. When in RT Mode, this applies to the RT Command Stack.	
11	MTRO	R/W	0	Set MTRO to logic "1" to generate an interrupt when an MT command stack rollover occurs.	
10	MTDRO	R/W	0	Set MTDRO to logic "1" to generate an interrupt when an MT data stack rollover occurs.	
9	HSKF	R/W	0	Set HSKF to logic "1" to generate an interrupt when a handshake failure occurs between the device and external RAM in Transparent Mode.	
8	BCRTY	R/W	0	Set BCRTY to logic "1" to generate an interrupt when the BC tries to re-send a message, regardless of whether the retry was successful or not.	
7	RTAPF	R/W	0	Set RTAPF to logic "1" to generate an interrupt when the The Remote Terminal address and parity bits do not exhibit odd parity.	
6	TTRO	R/W	0	Set TTRO to logic "1" to generate an interrupt when the time tag counter rolls over.	
5	RTCIRO	R/W	0	Set RTCIRO to logic "1" to generate an interrupt when the RT circular buffer rolls over	
4	CWEOM	R/W	0	Set CWEOM to logic "1" to generate an interrupt at the end of the current message provided the EOM interrupt is enabled in the respective BC or RT subaddress control word.	
3	BCEOF	R/W	0	Set BCEOF to logic "1" to generate an interrupt at the end of the current BC frame	
2	ERR	R/W	0	Set ERR to logic "1" to generate an interrupt when a 1553 Message Error, loopback failure or response timeout is detected	

Bit No.	Mnemonic	R/W	Reset	Bit Description		
			The function of this bit BC, RT or MT mode as	depends on whether the device is operating in s follows:		
			Set BRMINT to logic "1" to generate an interrupt when the conditions below are met:			
1	1 BRMINT R/W	R/W	0	BC Mode	A received RT Status Word contains the wrong RT address or an unexpected status bit value.	
			Enhanced RT Mode	A valid Mode Command is received.		
				Word Monitor Mode	A valid received command word matches the value programmed in the Monitor Trigger Register.	
0 (LSB)	EOM	R/W	0	Set EOM to logic "1" to generate an interrupt at the end of every message.		

2.2. Configuration Register #1, Read/Write 0x0001

Configuration Register #1 is used to select the device's mode of operation and for software control of operational features such as RT Status Word bits, Time-Tagging, etc. Specific bit functionality depends on the selected mode of operation as outlined in the Tables below.

Bit No.	Mnemonic	R/W	Reset	Bit Description
15 (MSB)	MODE1	R/W	1	Set to logic "0" for BC mode of operation.
14	MODE2	R/W	0	Initializes logic "0" in BC mode.
13	MEMAB	R/W	0	This bit indicates which fixed memory location is used. If MEMAB is logic "0", Location A is used If MEMAB is logic "1", Location B is used.
12	ABRTME	R/W	0	Set ABORTME to logic "1" to abort message processing at the end of the current message when the BC encounters a message error. BC Message processing will continue if an optional message retry is successful.
11 – 0	-	R/W	0	Used only in Enhanced BC Mode (see below)

	D '- (// 4	MILL IN THE REPORT OF A REAL	(1)
(ODTIOU IPOTION	$Podictor \pi'$	NON_HNDOCOG	
Comulation	$\Gamma \subset U \cup U$		
 			 (

Table 3. Configuration Register #1, Enhanced BC Mode.

To enable Enhanced BC Mode, bit 15 of Configuration Register #1 should be set to logic "0" <u>AND</u> bit 15 of Configuration Register #3 should be set to logic "1".

Bit No.	Mnemonic	R/W	Reset	Bit Description
15 (MSB)	MODE1	R/W	1	Set to logic "0" for BC mode of operation.
14	MODE2	R/W	0	Initializes logic "0" in BC mode.
13	МЕМАВ	R/W	0	Current Memory Pointer.
				Logic "0" for Location A, logic "1" for Location B.
				Abort at End of Message if Error.
12	ABRTME	R/W	0	Set to logic "1" to abort message processing at the end of the current message when the BC encounters an error. BC Message processing will continue if the message retry feature is enabled and retry is successful.
				Abort at End of Frame if Error.
11	ABRTFE	R/W	0	Set to logic "1" to abort message processing at the end of the current frame when the BC encounters an error. BC Message processing will continue if the message retry feature is enabled and retry is successful.
				Abort at End of Message if Status Bits Set.
10	ABRTMES	R/W	0	Set to logic "1" to abort message processing at the end of the current message when non-masked Status Word bits are set unexpectedly. BC Message processing will continue if the message retry feature is enabled and retry is successful.
				Abort at End of Frame if Status Bits Set.
9	ABRTFES	R/W	0	Set to logic "1" to abort message processing at the end of the current frame (even if Auto Frame Repeat is enabled) when non-masked Status Word bits are set unexpectedly. BC Message processing will continue if the message retry feature is enabled and retry is successful.
				Auto Frame Repeat.
				Logic "0": The host manually starts each BC frame.
8	AFR	R/W	R/W 0	Logic "1": BC frame will repeat indefinitely provided none of the conditions outlined in bits 12:9 occur or the part is not reset. A fixed frame time may be set by setting bit 6, Internal Trigger below.
				External Trigger.
7	ETRIG	R/W	0	Set to logic "1" to start BC message processing via rising edge of EXT_TRIG signal.

Bit No.	Mnemonic	R/W	Reset	Bit Description
			0	Internal Trigger.
6 ITR	ITRIG	R/W		This bit is used in conjunction with bit 8, Auto Frame Repeat, to automatically repeat the BC frame with a fixed frame time. The time is set in increments of 100μ s (up to 6.55 sec.) according to the value specified by the BC Frame Time Register.
				Logic "1": Enable.
				Logic "0": Disable. Stop after a single frame.
				Message Gap Timer.
				Logic "0": Default message gap (~10µs).
5	5 GAPTMR R/W	R/W	0	Logic "1": The message gap is defined in steps of 1 μ s in the third word of the BC Message Block Descriptor (the defined value may be 10 μ s – 65.535 ms)
		R/W	0	Message Retry.
4 RTY	RTY			Logic "1": Enable BC message retries by setting bit 8 in the respective BC control word.
				Logic "0": Disable message retries.
3	RTY2X	R/W	0	If RTY2X is set to logic "1" and retries are enabled by setting bit 4 above, then the BC will retry again if the first attempt was unsuccessful.
				If RTY2X is set to logic "0", then retry only once.
			R 0	BC Enabled.
2 BCEN	BCEN	R		Logic "1" indicates the BC state machine is enabled, i.e. is active and processing messages.
				Logic "0" indicates the BC is in Idle mode.
1	BCFIP	R	0	This bit will read logic "1" for the start of the first message to the end of the last message in a BC frame.
0 (LSB)	BCMIP	R	0	This bit will read logic "1" for the duration of all BC messages.

Table 4. Configuration Register #1, RT Mode (without Alternate Status Word).

Configuration Register #3, bit 5 = logic "0". For Enhanced RT operation, bit 15 of Configuration Register #3 should be set to logic "1".

Bit No.	Mnemonic	R/W	Reset	Bit Description
15 (MSB)	MODE1	R/W	1	Set to logic "1" for RT mode of operation.
14	MODE2	R/W	0	If bit 15 is logic "1" for RT operation, this bit should be logic "0". In this case, enable MT mode (i.e. RT/MT) by setting bit 12 of this register.
13	MEMAR	R/W/	0	Current Memory Pointer.
10			0	Logic "0" for Location A, logic "1" for Location B.
				Message Monitor Enable
12	MTEN	R/W	0	Logic "1": Enable Message Monitor.
				Logic "0": Disable Message Monitor.
				Dynamic Bus Control Acceptance, active low.
11	11 DBAC	R/W	0	Logic "0": The RT will respond to a Dynamic Bus Control Mode Code Command by setting the Dynamic Bus Control Acceptance bit in the RT Status Word.
				Logic "1": The Dynamic Bus Control Acceptance bit in the RT Status Word will always be zero.
		R/W		Busy Bit, active low.
10	BUSY		0	Logic "0" will result in "busy" status set. The RT will not respond to commands and will transmit the RT Status Word with the busy bit set.
				Logic "1" results in the busy bit not set in the RT Status Word and the RT will respond to commands in the normal way.
				Service Request Bit, active low.
9	SVCREQ	R/W	0	Logic "0" will result in the Service Request bit set in the RT Status Word.
			Logic "1" will result in the Service Request bit not set in the RT Status Word.	
				Subsystem Flag Bit, active low.
8 S	SSYS	R/W	0	Logic "0" will result in the Subsystem Flag bit set in the RT Status Word.
				Logic "1" will result in the Subsystem Flag bit not set in the RT Status Word.

Bit No.	Mnemonic	R/W	Reset	Bit Description
				Terminal Flag Bit, active low.
				Enhanced Mode only (Configuration Register #3, bit 15 = logic "1").
7	7 TF	R/W	0	Logic "0" will result in the Terminal Flag bit set in the RT Status Word.
				Logic "1" will result in the Terminal Flag bit not set in the RT Status Word.
6 - 1		-	-	Not used.
		R	0	RT Message in Progress.
0 (LSB)	RTMIP			Enhanced Mode only (Configuration Register #3, bit 15 = logic "1").
				Logic "1" indicates the RT is processing a message. Set just before SOM and reset just after EOM.

Table 5. Configuration Register #1, RT Mode (with Alternate Status Word).

Configuration Register #3, bit 5 = logic "1". Bits 11 – 1 of the RT status word are programmable directly by the host. For use of the RT Alternate Status word, Enhanced RT operation must be activated (bit 15 of Configuration Register #3 should be set to logic "1").

Bit No.	Mnemonic	R/W	Reset	Bit Description		
15 (MSB)	MODE1	R/W	1	Set to logic "1" for RT mode of operation.		
14	MODE2	R/W	0	Set to logic "0" for RT mode of operation.		
13	MEMAB	R/W	0	Current Memory Pointer. Logic "0" for Location A, logic "1" for Location B.		
12	MTEN	R/W	0	Message Monitor Enable Logic "1": Enable Message Monitor. Logic "0": Disable Message Monitor.		
11	MERR	R/W	0	If this bit is logic "1", the Message Error bit (bit 9) of the RT Status Word will be set.		
10	INS	R/W	0	If this bit is logic "1", the Instrumentation bit (bit 10) of the RT State Word will be set.		
9	SVCREQ	R/W	0	If this bit is logic "1", the Service Request bit (bit 11) of the RT Status Word will be set.		
8	RSRV1	R/W	0	If this bit is logic "1", bit 12 of the RT Status Word will be set.		
7	RSRV2	R/W	0	If this bit is logic "1", bit 13 of the RT Status Word will be set.		
6	RSRV3	R/W	0	If this bit is logic "1", bit 14 of the RT Status Word will be set.		

Bit No.	Mnemonic	R/W	Reset	Bit Description		
5	BCST	R/W	0	If this bit is logic "1", Broadcast Command Received bit (bit 15) of the RT Status Word will be set.		
4	BUSY	R/W	0	If this bit is written logic "1", the Busy bit (bit 16) of the RT Status Word will be set.		
3	SSYS	R/W	0	If this bit is written logic "1", the Subsystem Flag bit (bit 17) of the RT Status Word will be set.		
2	DBAC	R/W	0	If this bit is written logic "1", bit 18 of the RT Status Word will be se		
1	TF	R/W	0	If this bit is written logic "1", the Terminal Flag bit (bit 19) of the RT Status Word will be set.		
			R 0	RT Message in Progress.		
0 (LSB)	RTMIP	R		Logic "1" indicates the RT is processing a message. Set just before SOM and reset just after EOM.		

Table 6. Configuration Register #1, Enhanced Monitor Mode.

Enhanced mode is activated by setting bit 15 of Configuration Register #3 to logic "1". Bits 15 – 13 apply to both Enhanced and non-Enhanced Modes. Bits 12 – 0 only apply in Enhanced Mode.

Bit No.	Mnemonic	R/W	Reset	Bit Description			
15 (MSB)	MODE1	R/W	1	Set to logic "0" for MT mode of operation.			
14	MODE2	R/W	0	Set to logic "1" for MT mode of operation.			
13	MEMAB	R/W	0	Current Memory Pointer. Logic "0" for Location A. logic "1" for Location B.			
12	MTEN	R/W	0	Message Monitor Enable Logic "1": Enable Message Monitor. Logic "0": Disable Message Monitor.			
11	TRIGEN	R/W	0	Word Monitor Trigger Enable. Enable with logic "1". This bit must be set in Word Monitor Mode to enable a monitor start via EXT_TRIG (bit 7 below set to logic "1") or via successful comparison between a received valid word and the word stored in the MT Trigger Resister (0x00D).			
10	TRSTRT	R/W	0	Start Word Monitor on Trigger. Enable with logic "1". The Word Monitor will start monitoring following successful comparison between a received valid word and the word stored in the MT Trigger Resister (0x00D).			

Bit No.	Mnemonic	R/W	Reset	Bit Description		
				Stop Word Monitor on Trigger.		
9	TRSTOP	R/W	0	Enable with logic "1". The Word Monitor will stop monitoring following successful comparison between a received valid word and the word stored in the MT Trigger Resister (0x00D).		
8	-	-	-	Not used.		
				External Trigger.		
7	EXTTRIG	R/W	0	Set to logic "1" to start MT via rising edge of EXT_TRIG signal. Monitor trigger must also be enabled by setting bit 11 of this register.		
6 - 3	-	-	-	Not used.		
2	2 MEN R			Monitor Enabled.		
2			0	A logic "1" indicates the Monitor is enabled.		
				Monitor Triggered.		
1	MTR	R	0	A logic "1" indicates the Monitor was triggered either by successful comparison with the word in the MT Trigger Resister (0x00D) or via rising edge of the EXT_TRIG signal		
	МАСТ	Б	R 0	Monitor Active.		
	IVIAC I	ĸ		A logic "1" indicates the Word Monitor was started.		

2.3.	Configuration	Register #2,	Read/Write	0x0002
------	---------------	--------------	-------------------	--------

Bit No.	Mnemonic	R/W	Reset	Bit Descrip	Bit Description						
15 (MSB)	EINTEN	R/W	0	Set EINTEN	Set EINTEN to logic "1" to enable Enhanced Interrupts.						
14	RAMP	R/W	0	Set RAMP 1	Set RAMP to logic "1" to enable parity checking in the internal RAM.						
13	BUSYLU	R/W	0	Set BUSYL	U to logic "1"	to enable tl	he Busy Lookup Table.				
12	DBUF	R/W	0	Set DBUF t (see bit 1 be	o logic "1" to elow).	enable Dou	ble Buffering for Rx messages				
11	OVINV	R/W	0	Setting OVI overwritten.	NV to logic "	1" will cause	e invalid circular buffer data to be				
10	256RO	R/W	0	If 256RO is	logic "0", RA	M buffers w	vill rollover after 256 words.				
				Time Tag R follows:	esolution bits	s. Bits 9 – 7	set the time tag resolution as				
			0	Bit 9	Bit 8	Bit 7	Time Tag Resolution				
				0	0	0	64 µs				
	TTRES	R/W		0	0	1	32 µs				
				0	1	0	16 µs				
9 – 7				0	1	1	8 µs				
				1	0	0	4 µs				
				1	0	1	2 µs				
				1	1	0	The Time Tag is incremented by writing logic "1" to bit 4 of the Start/Reset Register.				
				1	1	1	The Time Tag is incremented by means of an external clock connected to TAG_CLK.				
6	TTSYNC	R/W	0	In RT Mode when a Syr	e, setting this achronize Wi	bit to logic thout Data i	"1" will clear the Time Tag counter mode command is received.				
5	SYNCDAT	R/W	0	In RT Mode, setting this bit to logic "1" will cause the data word in a received Synchronize With Data mode command to loaded into the Time Tag Register. In BC Mode, setting this bit to logic "1" will allow the value of the Time Tag Register to be transmitted as the data word in a Synchronize With Data mode command.							
4	CLRSTAT	R/W	0	Logic "1": C respectively Logic "0": C logic "1" to I	lear Interrupt /. lear both Inte bit 2, Start/Re	t Status Reg errupt Status eset Registe	gisters #1 or #2 when read s Registers #1 and #2 by writing er 0x003.				

Bit No.	Mnemonic	R/W	Reset	Bit Description
				This bit sets whether the interrupt output signal INT is a continuous level or a pulse.
3 LE	LEVEL	R/W	0	Logic "1": The $\overline{\text{INT}}$ output signal will be a level that will remain low until Interrupt Status Registers #1 and #2 are cleared.
				Logic "0": The \overline{INT} output signal will be a 500ns pulse.
				Logic "0": The Service Request bit in the RT Status Word may only be controlled by the host.
2 SRRI	SRREQ	R/W	0	Logic "1": The Service Request bit in the RT Status Word may be controlled by the host, but is cleared when the RT responds to a Transmit Vector Word mode code command
				This bit is used to set the Enhanced RT buffering mode.
1	ENRTBUF	R/W	0	ENRTBUF = logic "0": If bit 12 of this register is logic "1", double buffer mode will be set globally for all Rx commands. If bit 12 is logic "0", single buffer mode will be set.
				ENRTBUF = logic "1": Each Rx subaddress can have a different buffering mode, set by the individual subaddress control word.
				Notice 2 Broadcast Data Storage.
0 (LSB)	NOTICE2	R/W	0	If this bit is logic "1", the terminal stores data associated with broadcast commands separately from data associated with non-broadcast commands to meet the requirements of MIL-STD-1553B Notice 2.
				If this bit is logic "0", broadcast command data is stored in the same buffer with data from nonbroadcast commands.

2.4. Command Stack Pointer Register/ Enhanced BC Instruction List Register, Read Only 0x0003

When read, this register contains the current value of the Stack Pointer for RT, MT and non-enhanced BC modes. In Enhanced BC Mode, this register will contain a pointer to the BC Instruction List.

Bit No.	R/W	Reset	Bit Description	
15 (MSB) - 0 (LSB)	R	0	Command Stack Pointer, bits[15 - 0] respectively.	

2.5. Start/Reset Register, Write Only 0x0003

Bit No.	Mnemonic	R/W	Reset	Bit Description			
15 (MSB) - 12		W	0	Reserved.			
11	RTON	W	0	If the RT goes offline following receipt of an Initiate Self-Test mode command (RTOFF bit 4 of Configuration Register #7 set) then the RT will automatically restart following completion of the self-test. However, if the host does not run the self-test by setting bit 7 of this register, then this bit should be set in order to bring the RT back online.			
10	CLRST	W	0	Setting CLRST to logic "1" will clear the Self-Test Register			
9	RAMST	W	0	Setting PROST to logic "1" will initiate a RAM Self-Test			
8	-	W	0	Reserved			
7	PROST	W	0	Setting PROST to logic "1" will initiate a Protocol Self-Test			
6	STOPMSG	w	0	In BC Mode, setting this bit will stop operation at End-of- Message. In MT Mode, setting this bit will stop message monitoring.			
5	BCSTOPFR	w	0	In BC Mode, setting this bit will stop operation at End-of- Frame.			
4	TTINC	w	0	Setting this bit will increment the Time Tag Counter by "1" LSB when Time Tag Resolution bits 9-7 of Configuration Register #2 are set to "110".			
3	TTRST	W	0	Setting TTRST to logic "1" will reset the Time Tag Counter.			
2	INTRST	W	0	Setting this bit will clear Interrupt Status Registers #1 and #2.			
1	BCMTSTRT	W	0	In BC Mode, setting this bit will start the BC. In MT Mode, setting this bit will start the MT.			
0 (LSB)	SFTRESET	W	0	Setting this bit will initiate a software reset.			

When writing to this register, all reserved bits must be written logic "0".

2.6. BC Control Word Register, Read/Write 0x0004

The BC Control Word is the first word in each Message Control / Status Block. The BC Control Word is not transmitted on the MIL-STD-1553 bus. This word is initialized and maintained by the host to specify message attributes such as bit masks for the received RT Status Word, which bus to use, enabling self test, BC message format, etc.

Bit No.	Mnemonic	R/W	Reset	Bit Description
				Transmit Time Tag for Synchronize (with data) Mode Code Command (MC17).
15 (MSB)	TXTTMC17	R/W	0	If TXTTMC17 bit is logic "0" the BC transmits the value contained in the Message Data Block as the data word for a "synchronize" mode code command MC17.
				If TXTTMC17 bit is logic "1", the "synchronize" mode data word value originates from the value of the Time Tag Register. Bit 5 of Configuration Register #2 must also be set.
				Message Error Bit Mask.
14	MEMASK	R/W	0	If MEMASK bit is logic "0" and the Message Error bit is logic 1 in the received RT Status Word, the BC will recognise the Message Error status.
				If MEMASK bit is logic "1", the Message Error bit in the received RT Status Word is masked and is treated by the BC as "Don't Care".
	SRQMASK	R/W	0	Service Request Bit Mask.
13				If SRQMASK bit is logic "0" and the Service Request bit is logic 1 in the received RT Status Word, the BC will recognise the Service Request status.
				If SRQMASK bit is logic "1", the Service Request bit in the received RT Status Word is masked and is treated by the BC as "Don't Care".
				Busy Bit Mask.
12	BSYMASK	R/W	0	If BSYMASK bit is logic "0" and the Busy bit is logic 1 in the received RT Status Word, the BC will recognise the Busy status.
				If BSYMASK bit is logic "1", the Busy bit in the received RT Status Word is masked and is treated by the BC as "Don't Care".
				Subsystem Flag Bit Mask.
11	SSYSMASK	R/W	0	If SSYSMASK bit is logic "0" and the Subsystem Flag bit is logic 1 in the received RT Status Word, the BC will recognise the Subsystem Flag status.
				If SSYSMASK bit is logic "1", the Subsystem Flag bit in the received RT Status Word is masked and is treated by the BC as "Don't Care".

Bit No.	Mnemonic	R/W	Reset	Bit Description		
				Terminal Flag Bit Mask.		
10	TFMASK	R/W	0	If TFMASK bit is logic "0" and the Terminal Flag bit is logic 1 in the received RT Status Word, the BC will recognise the Terminal Flag status.		
				If TFMASK bit is logic "1", the Terminal Flag bit in the received RT Status Word is masked and is treated by the BC as "Don't Care".		
				Reserved Bits Mask.		
9	RSVMASK	R/W	0	If RSVMASK bit is logic "0" and one or more of the three Reserved bits is logic "1" in the received RT Status Word, the BC will recognise the Reserved status.		
				If RSVMASK bit is logic "1", the Reserved bits in the received RT Status Word are masked and are treated by the BC as "Don't Care".		
				Retry Enabled.		
8	RTRYENA	R/W	0	If RTRYENA is set to logic "1", failed messages will be retried according to Configuration Register settings.		
	USEBUSA	R/W		Use Bus A/B.		
7			0	If this Control Word bit is logic "1", the BC transmits the command on Bus A.		
				If this Control Word bit is logic "0", the BC transmits the command on Bus B.		
				Self-Test Message Off-Line.		
6	SELFTST	R/W	0	If SELFTST is logic "1", an internal loopback test (bus transmission disabled) is performed.		
	MASKBCR	R/W		Mask Broadcast Command Received Bit.		
5			0	If MASKBCR bit is logic "0" and the Broadcast Command Received bit is logic "1" in the received RT Status Word, the BC will recognise the Broadcast status.		
				If MASKBCR bit is logic "1", the Broadcast Command Received bit in the received RT Status Word is masked and is treated by the BC as "Don't Care".		
				End of Message Interrupt.		
4	EOMINT	R/W	0	If EOMINT is logic "1", an interrupt request will be generated (if not masked in Interrupt Enable Register #1) upon message completion.		
				1553A/B Select.		
3	1553AB	R/W	0	If 1553AB is Logic "1", RT response will comply with MIL-STD- 1553A.		
				If 1553AB is Logic "0", RT response will comply with MIL-STD- 1553B.		

Bit No.	Mnemonic	R/W	Reset	Bit Description				
				BC Messa	ge Format.			
		R/W	0	The BC Me	essage forma	at is defined	by these three bits as follows:	
	BCMSGFT			Bit 2	Bit 1	Bit 0	BC Message Format	
2 – 0 (LSB)				0	0	0	BC-to-RT	
				0	0	1	RT-to-RT	
				0	1	0	Broadcast	
				0	1	1	Broadcast RT-to-RTs	
				1	0	0	Mode Code	
				1	0	1	Not Used	
				1	1	0	Broadcast Mode Code	
				1	1	1	Not Used	

2.7. RT Subaddress Control Word Register, Read/Write 0x0004

This register enables the buffering mechanism for transmit, receive and broadcast subaddresses, either globally or for individual subaddresses (via the subaddress control word lookup table). It is Read-Only when the RT is active and reads back the value of the last received control word. It may be written for test purposes when the RT is Idle.

Bit No.	Mnemonic	R/W	Reset	Bit Description
				If this bit is logic "1" then either double buffering or circular buffering will be set globally for all subaddresses (see MEMx bits below).
15 (MSB) DBGB				If this bit is logic "0", then double buffering or circular buffering will be enabled for individual subaddresses. In this case, the RT must be in enhanced mode with Enhanced RT buffering enabled (set ENRTBUF bit 1 of Configuration Register #2). Combinations of the MEMx bits below set the size of the buffer.
	R/W	0	To enable double buffering for individual subaddresses (via the subaddress control word lookup table), DBUF bit 12 of Configuration Register #2 should be set.	
				To enable circular buffering for individual subaddresses (via subaddress control word lookup table), CIRCEN bit 12 of Configuration Register #6 should be set.
				Note: This bit is ignored for Tx subaddresses.
14	TXEOM	R/W	0	TXEOM = logic "1" enables an interrupt to be generated when the end of a message occurs for a transmit subaddress.
13	TXCIR	R/W	0	TXCIR = logic "1" enables an interrupt to be generated when a transmit subaddress circular buffer rolls over.

Bit No.	Mnemonic	R/W	Reset	Bit Description					
				These bits set the buffer type and size for transmit subaddress buffering as follows:					
				TXMEM2 bit 12	TXMEM1 bit11	TXMEM0 bit 10	Buffering Mode		
				0	0	0	Individual Tx subaddress single message buffering		
				0	0	1	Individual Tx subaddress circular buffering, 128 Words		
12 – 10 TXMEM[2:0]	R/W	0	0	1	0	Individual Tx subaddress circular buffering, 256 Words			
			0	1	1	Individual Tx subaddress circular buffering, 512 Words			
						1	0	0	Individual TX subaddress circular buffering, 1024 Words
					1	0	1	Individual TX subaddress circular buffering, 2048 Words	
				1	1	0	Individual Tx subaddress circular buffering, 4096 Words		
				1	1	1	Individual Tx subaddress circular buffering, 8192 Words		
9	RXEOM	R/W	0	RXEOM = logic "1" end of a message oc	nables an inte curs for a rec	errupt to be ge eive subaddre	nerated when the ss.		
8	RXCIR	R/W	0	RXCIR = logic "1" en receive subaddress o	ables an inter circular buffer	rupt to be gen rolls over.	erated when a		

Bit No.	Mnemonic	R/W	Reset	Bit Description					
				These bits set the buffer type and size for receive subaddress buffering as follows:					
				DBGB bit 15	RXMEM2 bit 12	RXMEM1 bit11	RXMEM0 bit 10	Buffering Mode	
				0	0	0	0	Individual Rx subaddress single message buffering	
				0	0	0	1	Individual Rx subaddress circular buffering, 128 Words	
				0	0	1	0	Individual Rx subaddress circular buffering, 256 Words	
7 – 5 RXMEM[2:0]	R/W	0	0	0	1	1	Individual Rx subaddress circular buffering, 512 Words		
			0	1	0	0	Individual RX subaddress circular buffering, 1024 Words		
				0	1	0	1	Individual RX subaddress circular buffering, 2048 Words	
				0	1	1	0	Individual Rx subaddress circular buffering, 4096 Words	
				0	1	1	1	Individual Rx subaddress circular buffering, 8192 Words	
				1	0	0	0	Global double buffering for all Rx subaddresses.	
				1	1	1	1	Globar circular buffering for all Rx subaddresses. The size of the buffer is set by bits CIRSZE[11:9] of Configuration Register #6.	
4	BCSTEOM	R/W	0	BCSTE end of a	OM = logic "1 a message oc	" enables an curs for a bro	interrupt to be adcast subado	generated when the lress.	
3	BCSTCIR	R/W	0	BCSTC broadca	IR = logic "1" ast subaddres	enables an ir s circular buf	iterrupt to be g fer rolls over.	enerated when a	

Bit No.	Mnemonic	R/W	Reset	Bit Des	scription			
				These I bufferin	bits set the bu g as follows:	ffer type and	size for broado	cast subaddress
				DBGB bit 15	BCSTMEM2 bit 12	BCSTMEM1 bit11	BCSTMEM0 bit 10	Buffering Mode
				0	0	0	0	Individual BCST subaddress single message buffering
				0	0	0	1	Individual BCST subaddress circular buffering, 128 Words
				0	0	1	0	Individual BCST subaddress circular buffering, 256 Words
			0	0	0	1	1	Individual BCST subaddress circular buffering, 512 Words
2 - 0	BCSTMEM[2:0]	R/W		0	1	0	0	Individual BCST subaddress circular buffering, 1024 Words
				0	1	0	1	Individual BCST subaddress circular buffering, 2048 Words
				0	1	1	0	Individual BCST subaddress circular buffering, 4096 Words
				0	1	1	1	Individual BCST subaddress circular buffering, 8192 Words
				1	0	0	0	Global double buffering for all BCST subaddresses.
				1	1	1	1	Globar circular buffering for all BCST subaddresses. The size of the buffer is set by bits CIRSZE[11:9] of Configuration Register #6.

2.8. Time Tag Register, Read/Write 0x0005

Bit No.	R/W	Reset	Bit Description
15 (MSB) – 0 (LSB)	R/W	0	This register contains the current value of the time tag counter. The resolution of the Time Tag (in μ s/LSB) is programmable through bits 9 – 7 of Configuration Register #2.

2.9. Interrupt Status Register #1, Read Only 0x0006

The bits in this register will be set when the respective event occurs, regardless of whether the interrupt is enabled (equivalent bit set in the Interrupt Enable Register #1) or not.

Bit No.	Mnemonic	R/W	Reset	Bit Description
1E (MOD)	MINIT		0	This bit only applies when Enhanced Interrupts are enabled by setting bit 15 of Configuration Register #2.
15 (1015B)	IVIIIN I	ĸ	0	MINT will be set to logic "1" if an interrupt request has been generated on the $\overline{\text{INT}}$ output signal.
14	RAMPE	R	0	RAMPE will be set to logic "1" when a RAM parity error occurs.
13	тхто	R	0	TXTO will be set to logic "1" when a transmitter timeout occurs.
12	STKRO	R	0	STKRO will be set to logic "1" when a command stack rollover occurs. When in BC Mode, this applies to the BC Command Stack. When in RT Mode, this applies to the RT Command Stack.
11	MTRO	R	0	MTRO will be set to logic "1" when an MT command stack rollover occurs.
10	MTDRO	R	0	MTDRO will be set to logic "1" when an MT data stack rollover occurs.
9	HSKF	R	0	HSKF will be set to logic "1" when a handshake failure occurs between the device and external RAM in Transparent Mode.
8	BCRTY	R	0	BCRTY will be set to logic "1" when the BC tries to re-send a message, regardless of whether the retry was successful or not.
7	RTAPF	R	0	RTAPF will be set to logic "1" when the RT address and parity bits do not exhibit odd parity.
6	TTRO	R	0	TTRO will be set to logic "1" when the time tag counter rolls over.
5	RTCIRRO	R	0	RTCIRRO will be set to logic "1" when the RT circular buffer rolls over.
4	CWEOM	R	0	CWEOM will be set to logic "1" at the end of the current message provided the EOM interrupt is enabled in the respective BC or RT subaddress control word.
3	BCEOF	R	0	BCEOF will be set to logic "1" at the end of the current BC frame
2	ERR	R	0	ERR will be set to logic "1" when a 1553 Message Error, loopback failure or response timeout is detected

Bit No.	Mnemonic	R/W	Reset	Bit Description		
			R/W 0	The function of this bit BC, RT or MT mode a BRMINT will be set to	depends on whether the device is operating in s follows: logic "1" when the conditions below are met:	
1	BRMINT	R/W		BC Mode	A received RT Status Word contains the wrong RT address or an unexpected status bit value.	
				Enhanced RT Mode	A valid Mode Command is received.	
				Word Monitor Mode	A valid received command word matches the value programmed in the Monitor Trigger Register.	
0 (LSB)	EOM	R/W	0	EOM will be set to logic "1" at the end of every message.		

2.10. Configuration Register #3, Read/Write 0x0007

Bit No.	Mnemonic	R/W	Reset	Bit Description	Bit Description			
15 (MSB)	ENHANC	R/W	0	Set ENHANC to logic "1", to enable Enhanced Mode operation.				
				The BCRTSTK[1:0 Mode) command s	The BCRTSTK[1:0] bits set the size of the BC (BC Mode) or RT (RT Mode) command stack size as follows:			
14 – 13 BCRTSTK[1:0]		0	BCRTSTK 1	BCRTSTK	0	BC OR RT Command Stack Size		
	R/W		0	0		256 words (64 messages)		
			0 1			512 words (128 messages)		
			1	0		1024 words (256 messages)		
				1	1		2048 words (512 messages)	
			0	The MTSTK[1:0] bi follows:	ts set the size	of tł	ne MT command stack size as	
				MTSTK 1	MTSTK	0	MT Command Stack Size	
12 - 11	MTSTK[1:0]	R/W		0	0		256 words (64 messages)	
				0	1		1024 words (256 messages)	
				1	0		4096 words (1024 messages)	
			1	1		16384 words (4096 messages)		

Bit No.	Mnemonic	R/W	Reset	Bit Description				
				The MTDA follows:	TA[2:0] bits	set the size of t	the MT data stack size as	
				MTSTK 2	MTSTK 1	MTSTK 0	MT Data Stack Size	
				0	0	0	65,536 words	
				0	0	1	32,768 words	
10 – 8	MTDATA[2:0]	R/W	0	0	1	0	16,384 words	
				0	1	1	8,192 words	
				1	0	0	4,096 words	
				1	0	1	2,048 words	
				1	1	0	1,024 words	
				1	1	1	512 words	
				If ILLOFF b	oit is logic "0	", Command III	egalization is enabled.	
7	ILLOFF	R/W	0	If ILLOFF to Illegalizato	oit is logic "1 n Table men	", Command III nory space may	egalization is disabled and the y be used for data storage	
				The MCRSVME decides how the RT responds to a received reserved mode command:				
6 MCRSVME	R/W	0	Logic "0": RT doesn't respond to reserved mode commands. Message Error bit is set.					
				Logic "1": F Error bit is	RT will respo not set.	ond to reserved	mode commands. Message	
				Setting ALTSTAT to logic "1" enables the Alternate RT Status Word as follows:				
5	ΔΙΤΩΤΑΤ	D/M		Logic "1": All RT Status Word response bits may be controlled directly by the Host by setting their respective bits 11 – 1 in Configuration Register #1.				
5	5 ALTSTAT R/W		0	Logic "0": 1 Dynamic B Subsystem Host by se #1.	The Alternate sus Control A n Flag bit and tting their res	e RT Status Wo Acceptance bit, d Terminal Flag spective bits 11	ord is disabled and only the Busy bit, Service Request bit, bits are programmable by the – 7 in Configuration Register	
				If NOILLRX the RT are	K is set to log not stored in	gic "1", illegal c n RAM.	ommand data words received by	
4	NOILLRX	R/W	0	If NOILLR> the RT are	K is set to log stored in RA	gic "0", illegal c \M.	ommand data words received by	
				If NOBUSY	If NOBUSYRX is set to logic "1", the RT responds "Busy status" with the BUSY bit set, but does not store the received data words in RAM			
3 NOBUSYRX	R/W	0	If NOBUS	(RX is set to bit set and s	logic "0", the F tores the receiv	RT responds "Busy status" with ved data words in RAM.		

Bit No.	Mnemonic	R/W	Reset	Bit Description
				Active low.
2 RTTFF	RTTFF	R/W	0	If RTTFF is logic "1" the Terminal Flag bit in the RT status word will be automatically set following a transmitter timeout or loopback failure and control of the Terminal Flag bit is not accessable to the host.
			If RTTFF is logic "0" the Terminal Flag bit in the RT status word will be automatically set following a transmitter timeout or loopback failure and the Terminal Flag bit is also programmable by the host.	
4		R/W	0	If 1553A is set to logic "1", Mode Codes are processed according to MIL-STD-1553A.
	1553A			If 1553A is set to logic "0", Mode Codes are processed according to MIL-STD-1553B.
0 (LSB) ENHMC	ENHMC	HMC R/W		If ENHMC is set to logic "1", enhanced features are enabled for mode command processing. Mode code data words may be stored separately according to whether they are receive, transmit or broadcast and interrupts may be enables for individual mode codes.
				If ENHMC is set to logic "0", all mode code data is stored in the same location in RAM.

2.11. Configuration Register #4, Read/Write 0x0008

Bit No.	Mnemonic	R/W	Reset	Bit Description
				If BITW is set to logic "0" the RT will respond to a Transmit BIT word mode command with the data word stored in the internal BIT Word Register.
15 (MSB)	15 (MSB) BITW R	K/VV	U	If BITW is set to logic "1" the RT will respond to a Transmit BIT word mode command with the data word stored by the host in RAM location 0x0123.
14 INBITW	R/W	0	Setting INBITW to logic "1" will inhibit transmission of the BIT word (in response to a Transmit BIT word mode command) if the Busy bit is set. The RT will respond with the Busy bit set in the RT Status word but no BIT word will be transmitted.	
				If INBITW is logic "0", the BIT word will be transmitted (in response to a Transmit BIT word mode command), following transmission of the RT Status word with the Busy bit set.
		CBUSY R/W		This bit affects RT response to Transmit Vector Word or the Reserved Mode Commands 22 to 31 (decimal) when the busy bit is set.
13 MCBUSY	MCBUSY		0	If MCBUSY is logic "1" the RT will respond to the above mode commands with the busy bit set in the RT Status Word, followed by a data word.
				If MCBUSY is logic "0", no data word will be transmitted,

Bit No.	Mnemonic	R/W	Reset	Bit Description	
				In BC Mode, setting EBCCW to logic "1" enables all bits of the Expanded BC Control Word.	
12	EBCCW	R/W	0	In BC Mode, if EBCCW is logic "0" or if ENHANC bit 15 in Configuration Register #3 is logic "0", then only bits 7, 6, 5, 2, 1, and 0 in the BC Control Word are enabled.	
11 BCSTMEN	R/W	0	In BC Mode, if BCSTMEN is logic "1", the function of the MASKBCR bit in the BC Control Word is enabled, i.e. if BCSTMEN is logic "1" and MASKBCR bit is logic "0", the BC will recognise Broadcast status if the Broadcast Command Received bit is logic "1" in the received RT Status Word. If MASKBCR bit is logic "1", the Broadcast Bit in the received RT Status Word is "Don't Care".		
				In BC Mode, if BCSTMEN is logic "0", the value of the MASKBCR bit in the BC Control Word is XORed with the Broadcast bit in the received RT Status Word.	
10	RTY1553A	R/W	0	Setting this bit to logic "1" will cause the BC to try to resend a message in 1553A mode when the Message Error bit in the received RT Status word is set. This is in addition to the normal criteria for retrying failed messages, provided retries are enabled (e.g. response timeout, etc.).	
					If RTYSTAT is logic "0", the BC will not retry to send a message in response to a received RT Status Word bit being set.
9 RTYSTAT R/	R/W	R/W 0	If RTYSTAT is logic "1", the BC will retry to send a message in response to a received RT Status Word bit being set, provided retries are enabled.		
			R/W 0	If this bit is set to logic "0", the first retry will be on the same bus as the original failed message.	
0	RITIALI			If this bit is set to logic "1", the first retry will be on the opposite bus from the original failed message.	
				If this bit is set to logic "0", the second retry will be on the same bus as the original failed message.	
7	RTY2ALT	R/W	0	If this bit is set to logic "1", the second retry will be on the opposite bus from the original failed message.	
				Note that the second retry option must be enabled by setting RTY2X, bit 3 of Configuration Register #1.	
6	MERVAL	R/W	0	When an RT responds to a valid message with the Message Error bit set in the status word, the requested number of data words must follow the status word in order for the response to be valid.	
			Setting MERVAL to logic "1" allows the message to be also valid if the status word is followed by no data words (e.g. illegal command).		
5	BUSYVAL	R/W	0	When an RT responds to a valid message with the Busy bit bit set in the status word, the requested number of data words must follow the status word in order for the response to be valid.	
	DUGTVAL			Setting BUSYVAL to logic "1" allows the message to be also valid if the status word is followed with no data words.	

Bit No.	Mnemonic	R/W	Reset	Bit Descrip	otion		
4 MTGAP	R/W	0	When in M the gap time received on	When in MT mode, this bit allows an additional 20µs to be added to the gap time of consecutive messages when the second message is received on the alternate bus.			
				Logic "0": A	dd 20µs to	gap time, e	ven if messages overlap.
				Logic "1": G	ap time wil	remain und	changed.
3	RTLATEN	R/W	0	When set to and parity, p When RTLA latched.	o logic "1", F provided the ATEN is log	RTLATEN e e input signa ic "0", the R	nables latching of the RT address al RT_AD_LAT is also logic "1". T address and parity will not be
			The TEST[2:0] bits are used to set hardware and protocol test conditions:				
		R/W	0	TEST2	TEST1	TEST0	Description
				0	0	0	Normal Operation.
				0	0	1	Test Decoder.
2 - 0	TEST[2:0]			0	1	0	Test Encoder.
				0	1	1	Test Protocol.
				1	0	0	Test failsale timer.
				1	0	1	Test Registers.
				1	1	0	Reserved.
				1	1	1	Not supported.

2.12.	Configuration	Register #	5, Read/Write 0x0009
-------	---------------	------------	----------------------

Bit No.	Mnemonic	R/W	Reset	Bit Description			
15 (MSB)	CLKSEL	R	0	This Read-Only Configuration Re	bit simply returns gister #6.	the value of CLKSEL0, bit 0 of	
14	SNGLEND	R	0	This bit reflects t section Signal D	he state of the SN escriptions.	IGL_END input signal. See the	
13	TXINHA	R	0	TXINHA will be le "1", indicating that	ogic "1" when the at transmission or	TX_INH_A input signal is logic n Bus A has been inhibited.	
12	TXINHB	R	0	TXINHB will be I "1", indicating that	ogic "1" when the at transmission or	TX_INH_B input signal is logic Bus B has been inhibited.	
11	ZEROXEN	R/W	0	Setting ZEROXE both edges of the	EN to logic "0" will e clock input.	cause the decoder to sample	
				These two bits s follows:	et the device RT-t	o-RT response timeout as	
			0	RTRTTO1	RTRTT00	RT-to-RT Response Timeout	
10 - 9	RTRTTO[1:0]	R/W		0	0	18.5 µs	
				0	1	22.5 µs	
				1	0	50.5 µs	
				1	1	130 µs	
				If GTEN is set to minimum gap tin	logic "0", the dev ne between mess	ice will not check for a ages.	
8	GTEN	R/W	0	If GTEN is set to gap time betwee will result in the r	logic "1", the dev n messages of 2µ nessage being in	ice will check for a minimum us. Violating this minimum time valid.	
-	DOOTDIO			If BCSTDIS is set to logic "1", the device will not recognise subaddress 31 as a Broadcast Command.			
/	7 BCSTDIS		0	If BCSTDIS is set to logic "0", the device will recognise subaddress 31 as a Broadcast Command.			
6	RTADLAT	R	0	This bit reflects t the section Signa	he state of the RT al Descriptions.	_AD_LAT input signal. See	
5 - 0 (LSB)	RTAD[4:0] RTADP (LSB)	R/W	0	Writing these low mechanism to se software. See R Signal Description	ver 6 bits via data et the RT Address T_AD_LAT input sons.	lines D5 – D0 provide a and Parity bit (LSB) via signal description in section	

2.13.	RT/Monitor	Data Stack	Address	Register,	Read/Write	A000x0
-------	-------------------	-------------------	---------	-----------	------------	--------

Bit No.	R/W	Reset	Bit Description
15 (MSB) – 0 (LSB)	R/W	0	This register contains the current value of the Data Stack pointer, either RT Data stack or Word Monitor Data Stack, depending on the mode of operation.

2.14. BC Frame Time Remaining Register, Read Only 0x000B

Bit No.	R/W	Reset	Bit Description
15 (MSB) – 0 (LSB)	R	0	In BC Mode, this register contains the value of the time remaining in the BC frame. The resolution is 100ms/LSB, with a maximum value of 6.55ms.

2.15. BC Message Time Remaining Register, Read Only 0x000C

Bit No.	R/W	Reset	Bit Description
15 (MSB) – 0 (LSB)	R	0	In BC Mode, this register contains the current value of the time-to-next message timer. The resolution is 1μ s/LSB, with a maximum value of 65.535ms.

2.16. Non-Enhanced BC Frame Time/Enhanced BC Initial Instruction Pointer / RT Last Command / MT Trigger Register, Read/Write 0x000D

Bit No.	R/W	Reset	Bit Description		
	R/W	0	The value of this regis	ster depends of the mode of operation as follows:	
			Mode of Operation	Register Function	
			Non-Enhanced BC	Used to program the BC frame time	
15 (MSB) – 0 (LSB)			Enhanced BC	Used to program the initial value of the BC instruction list pointer	
			RT	Used to store the last command processed by the RT.	
			Word Monitor	Used to store the value of the word which will initiate a monitor start if a valid received valid word matches it.	

2.17. RT Status Word Register, Read Only 0x000E

This register contains the current value of the device RT Status Word. This includes the Alternate RT Status Word, where all lower 11 bits are all programmable by the host.

Bit No.	R/W	Reset	Bit Description
15 (MSB) – 11	R	0	Logic "0"
10	R	0	Message Error Status Bit
9	R	0	Instrumentation Status Bit
8	R	0	Service Request Status Bit
7 – 5	R	0	Reserved bits
4	R	0	Broadcast Command Received Status Bit
3	R	0	Busy Status Bit
2	R	0	Subsystem Flag Status Bit
1	R	0	Dynamic Bus Control Acceptance Status Bit
0 (LSB)	R	0	Terminal Flag Status Bit

2.18. RT BIT Word Register, Read Only 0x000F

This register's bits will read logic "1" to reflect errors flagged by the device. The content of this register will be transmitted to the BC following a "Transmit BIT Word" mode command. It may also be read by the host.

Bit No.	Mnemonic	R/W	Reset	Bit Description
15 (MSB)	τχτο	R	<u> </u>	Transmitter Timed Out.
	ixio		Ű	The transmitter timeout of 668µs was exceeded.
14	IBER	D	0	Loopback Test Failure B.
14	LDFD	R	0	A loopback failure occurred on Bus B.
12			R 0	Loopback Test Failure A.
15	LDFA			A loopback failure occurred on Bus A.
12	HSF	R	0	Transparent Mode Handshake Failure.
				Transmitter Shutdown B.
11	TXSDB R	R	R O	A Transmitter Shutdown mode command was received on Bus A. This mode command shuts down the transmitter of the inactive bus.
				Transmitter Shutdown A.
10	TXSDA	R	0	A Transmitter Shutdown mode command was received on Bus B. This mode command shuts down the transmitter of the inactive bus.

Bit No.	Mnemonic	R/W	Reset	Bit Description
9	TFINH	R	0	Terminal Flag Inhibited.
				An Inhibit Terminal Flag mode command was received.
0				BIT Test Fail.
0	DITE		0	The device failed its internal Built-In-Test routine.
				Data Word Count High.
7	DWCH	R	0	The number of data words received in the last message was higher than expected.
				Data Word Count Low.
6	DWCL	R	0	The number of data words received in the last message was lower than expected.
_	5 SNYCF F		0	Incorrect Sync Received.
5		к		A command sync bit was detected in a data word.
4	INVW	R	0	Invalid Word Received
				RT-to-RT Gap / Sync / Address Error.
3	RTRTE	R	0	If the device is the receiving RT in an RT-to-RT transfer, this bit will be set if there is a gap time error (gap less than 2μ s), incorrect sync or format error, or incorrect RT address.
				RT-to-RT Timeout Error.
2	RTRTTO	R	0	This bit will be set if the allowed RT-to-RT response time is exceeded. The RT-to-RT response timeout is programmed by setting the RTRTTO[1:0] bits [10:9] in Configuration Register #5.
				RT-to-RT Command Word Error .
1	RTRTCWE	R	0	If the device is the receiving RT in an RT-to-RT transfer, this bit will be set if there is an error in the Transmit Command Word, e.g. T/\overline{R} bit is not logic "1".
0 (1 SP)			0	Received Command Word Error.
	ĸ	0	This bit will be set if there is an error in a received Command Word	
2.19.	Configuration	Register #6	, Read/Write 0x0018	
-------	---------------	--------------------	---------------------	
-------	---------------	--------------------	---------------------	

Bit No.	Mnemonic	R/W	Reset	Bit Descrip	Bit Description				
15 (MSB)	ENHBC	R/W	0	Setting ENI Mode opera	Setting ENHBC to logic "1" puts the device in Enhanced BC Mode operation.				
14	ENHCPU	R/W	0	Setting ENI to access th = logic "0", message se	Setting ENHCPU to logic "1" reduces the wait time for the host to access the bus if a message is in progress. If ENHCPU = logic "0", the host has to wait until the end of the entire message sequence (approximately 3.6µs for a 20MHz clock).				
13	INCSTK	R/W	0	In MT or RT the comma instead of S	In MT or RT modes, setting INCSTK to logic "1" will cause the command stack pointer to be incremented by 4 at EOM instead of SOM.				
12	CIRCEN	R/W	0	Setting CIR buffer.	CEN to logic	"1" enables	the RT global circular		
				These bits buffer as fo	are use to de llows:	fine the size	of the global circular		
	CIRSZE[2:0]		0	CIRSZE2	CIRSZE1	CIRSZE0	Global Circular Buffer Size		
		R/W		0	0	0	Circular buffering not enabled		
				0	0	1	128 words		
11 - 9				0	1	0	256 words		
				0	1	1	512 words		
				1	0	0	1024 words		
				1	0	1	2048 words		
				1	1	0	4096 words		
				1	1	1	8192 words		
8	NOINVMSG	R/W	0	If NOINVMSG is set to logic "1" then invalid messages which result in interrupts will not result in any update to the Interrupt Status Queue.					
7	NOVALMSG	R/W	0	If NOVALMSG is set to logic "1" then valid messages which result in interrupts will not result in any update to the Interrupt Status Queue.					
6	INTQEN	R/W	0	Setting this Queue.	bit to logic "	1" will enable	e the Interrupt Status		

Bit No.	Mnemonic	R/W	Reset	Bit Description			
	RTADSRC	R/W	0	If RTADSRC is logic "0", then the source of the RT address and parity will be come from the input signals RTAD[4:0] and RTADP respectively.			
5				If RTADSRC is logic "1", then the source of the RT address and parity will be come from bits 5 – 0 in Configuration Register #5. See also RT_AD_LAT input signal description in section Signal Descriptions.			
4	ENHMT	R/W	0	This bit affects operation when operating in combined RT/MT Mode. Setting ENHMT to logic "1" results in all command and data words being stored by the MT, including the RT status words.			
3	-	R/W	0	Reserved			
2	64WORD	R/W	0	Setting this bit to logic "1" expands the device internal register address space. As this accesses unavailable test registers, it is recommended to program this bit to logic "0".			
				These two bits select the table below.	e Clock Frequency	according to the	
			0	CLKSEL1	CLKSEL0	Clock Frequency (MHz)	
1 - 0 (LSB)	CLKSEL[1:0]	R/W		0	0	16	
				0	1	12	
				1	0	20	
				1	1	10	

Bit No.	Mnemonic	R/W	Reset	Bit Description
15 (MSB) - 10	MEMADR	R/W	0	Memory Management Base Address, bits[15 - 10] respectively.
9 - 5	-	R/W	0	Reserved.
4 RTOFF		R/W	0	Setting this bit to logic "1" will enable the RT to go offline upon receipt of an Initiate Self-Test mode command. The host will then be able to run the built-in selt-test.
3 1553RT R		R/W	0	Setting this bit to logic "1" will increase the maximum time from when a host requests access to when access is granted during a DMA transfer frmo 8µs to 10µs.
	ENHTT			This bit affects the functionality of a Synchronize With Data Mode Command.
2		R/W	0	In RT Mode, if SYNCDAT bit 5 in Configuration Register #5 is logic "1", then the data word in a Synchronize with data mode command will be loaded into the time tag register. If ENHTT is also logic "1", then this will only happen if the LSB is "0".
				In BC Mode, if SYNCDAT bit 5 in Configuration Register #5 is logic "1" and TXTTMC17 bit 15 in BC Control Word is logic "1" and ENHTT is also logic "1", then the data word for a Synchronize with data mode command will come from the time tag register.
1 ENBCWDT R/W 0 Setting this bit to logic "1" when the BC Frame Time Interrupt Status Register not masked by bit 3 in Interrupt Status Register		Setting this bit to logic "1" enables an interrupt to be generated when the BC Frame Timer expires (BCEOF will be set in the Interrupt Status Register and the interrupt will be generated if not masked by bit 3 in Interrupt Enable Register).		
0 (LSB) MCRST R/W 0 This bit sets the functionality of the shared INCMD digital output. If logic "0", the output is INCMD. If log output is MCRST. See section Pin Diagrams.		This bit sets the functionality of the shared INCMD / MCRST digital output. If logic "0", the output is INCMD. If logic "1", the output is MCRST. See section Pin Diagrams.		

2.20. Configuration Register #7, Read/Write 0x0019

Bit No.	Mnemonic	R/W	Reset	Bit Descript	Bit Description			
15 (MSB)	ENHBC	R	0	This bit is alv	This bit is always logic "1" in Enhanced BC Mode.			
				These bits in message as	These bits indicate the number of retries of the most recent message as follows:			
				RETRY1	RETRY0	Number of Retries		
14 - 13	RETRY[1:0]	R	0	0	0	None		
				0	1	1		
				1	0	Not Used		
				1	1	2		
12	BADMSG	R	0	This message will be logic "1" if the previous message was unsuccessful, i.e. contained errors, failed loopback or failed to elicit a response.				
11	RTSTAT	R	0	This bit will b set (provideo	e set if any of I they are unm	the RT Status Word bits are asked in the BC Control Word).		
10	GOODMSG	R	0	This bit will b was error fre message.	This bit will be set to logic "1" if the previous message was error free. It will be set to zero following an invalid message.			
9	FORMERR	R	0	The bit will b Format Error	e set if the pre	evious RT response had a 1553		
8	NORESP	R	0	This bit will b maximum res	e set if the BC sponse time h	c receives no response or if the as been exceeded.		
7 - 2	GPFLAG[7:2]	R	0	General Purpose Flags bits[7 – 2] respectively. These bits may be re-purposed for use by the host and set/reset by the BC FLG Instruction.				
1	GPFLAG1	R	0	General Purpose Flag 1. This flag may also be used as an "equal to" flag following BC compare instructions.				
0 (LSB)	GPFLAG0	R	0	General Purp "less than" fla	oose Flag 0. T ag following B	his flag may also be used as a C compare instructions.		

2.21. BC Condition Code Register, Read Only 0x001B

Bit No.	R/W	Reset	Bit Description		
15 (MSB) – 8	W	0	Clear General Purpose Flag, bits[7 – 0] respectively.		
7 – 0 (LSB)	W	0	Set General Purpose Flag, bits[7 - 0] respectively.		

2.22. BC General Purpose Flag Register, Write Only 0x001B

2.23. BIT Test Status Flag Register, Read Only 0x001C

The bits in this read-only register will be set when the corresponding conditions below have occurred (except for logic "0" bits).

Bit No.	R/W	Reset	Bit Description
15 (MSB)	R	0	Protocol Built-In Test Complete
14	R	0	Protocol Built-In Test In-Progress
13	R	0	Protocol Built-In Test Passed
12	R	0	Protocol Built-In Test Abort
11	R	0	Protocol Built-In Test Complete / In-Progress
10 - 8	R	0	These bits always read Logic "0"
7	R	0	RAM Built-In Test Complete
6	R	0	RAM Built-In Test In-Progress
5	R	0	RAM Built-In Test Passed
4 - 0 (LSB)	R	0	These bits always read Logic "0"

2.24. Interrupt Enable Register #2, Read/Write 0x001D

Setting a respective bit below to logic "1" will cause an interrupt to be generated when the corresponding event occurs. The equivalent bit in Interrupt Status Register #2 will also be set to logic "1" regardless of whether the enable bit is set or not. Setting a respective bit below to logic "0" will disable (mask) the interrupt.

Bit No.	Mnemonic	R/W	Reset	Bit Description		
15 (MSB)	-	R/W	0	Not Used		
14	BCOPER	R/W	0	Set BCOPER to logic "1" to generate an interrupt when a parity error is detected in an Enhanced BC instruction.		
13	ILLCMD	R/W	0	In RT Mode, set ILLCMD to logic "1" to generate an interrupt when a illegalized command is received. In Message Monitor Mode, set this bit to logic "1" to generate an interrupt when a message is received and stored by the monitor.		
12 QUERO			0	In Enhanced BC Mode, set this bit to logic "1" to generate an interrupt when the General Purpose Queue rolls over.		
		R/W	U	In RT and MT modes, set this bit to logic "1" to generate an interrupt when the Interrupt Status Queue rolls over.		
11	STKERR	R/W	0	In Enhanced BC Mode, set this bit to logic "1" to generate an interrup when the BC Call Stack overflows or underflows.		
10	BCILL	R/W	0	Set BCILL to logic "1" to generate an interrupt when the Enhanced BC fetches an illegal op code.		
9	RTSTK50	R/W	0	Set RTSTK50 to logic "1" to generate an interrupt when the RT Command Stack is 50% full.		
8	RTCIR50	R/W	0	Set RTCIR50 to logic "1" to generate an interrupt when the RT Circular Buffer is 50% full.		
7	MTSTK50	R/W	0	Set MTSTK50 to logic "1" to generate an interrupt when the MT Command Stack is 50% full.		
6	MTDT50	R/W	0	Set MTDT50 to logic "1" to generate an interrupt when the MT Data Stack is 50% full.		
5 - 2	BCIRQ[3:0]	R/W	0	Set BCIRQ[3:0] to logic "1" to generate an interrupt when the Enhanced BC issues an IRQ instruction.		
1	BIST	R/W	0	Set BIST to logic "1" to generate an interrupt when the devices completes a built-in self-test.		
0 (LSB)	_	R/W	0	Not Used		

2.25. Interrupt Status Register #2, Read Only 0x001E

The bits in this register will be set when the respective event occurs, regardless of whether the interrupt is enabled (equivalent bit set in the Interrupt Enable Register #2) or not.

Bit No.	Mnemonic	R/W	Reset	Bit Description	
15 (MSB)	MSTINT	R	0	MSTINT will be logic "1" when one or more of the interrupts below is pending.	
14	BCOPER	R	0	BCOPER will be set to logic "1" when a parity error is detected in an Enhanced BC instruction.	
13	ILLCMD	R	0	In RT Mode, ILLCMD will be set to logic "1" when an illegalized command is received. In Message Monitor Mode, this bit is set to logic "1" when a message is received and stored by the monitor.	
			0	In Enhanced BC Mode, QUERO will be set to logic "1" when the General Purpose Queue rolls over.	
12 QU	QUERU	ĸ	0	In RT and MT modes, this bit will be set to logic "1" when the Interrupt Status Queue rolls over.	
11	STKERR	R	0	In Enhanced BC Mode, STKERR will be set to logic "1" when the BC Call Stack overflows or underflows.	
10	BCILL	R	0	BCILL will be set to logic "1" when the Enhanced BC fetches an illegal op code	
9	RTSTK50	R	0	RTSTK50 will be set to logic "1" when the RT Command Stack is 50% full.	
8	RTCIR50	R	0	RTCIR50 will be set to logic "1" when the RT Circular Buffer is 50% full.	
7	MTSTK50	R	0	MTSTK50 will be set to logic "1" when the MT Command Stack is 50% full.	
6	MTDT50	R	0	MTDT50 will be set to logic "1" when the MT Data Stack is 50% full.	
5 - 2	BCIRQ[3:0]	R	0	These bits will be change when the Enhanced BC issues an IRQ instruction. The value of these bits will reflect the value of the 4 LSBs of the IRQ parameter respectively.	
1	BIST	R	0	Bit Test Complete	
0 (LSB)	INTSTAT1	R	0	INTSTAT1 will be set to logic "1" when one or more bits are set in Interrupt Status Register #1.	

2.26. BC General Purpose Queue Pointer Register / RT, MT Interrupt Status Queue Pointer Register, Read/Write 0x001F

In Enhanced BC mode, this register contains the pointer for the General Purpose Queue. In RT and Message Monitor modes, it contains the pointer for the Interrupt Status Queue. Bits 15 - 6 contain the base address and bits 5 - 0 contain the address of the next data location.

Bit No.	R/W	Reset	Bit Description
15 (MSB) - 6	R/W	0	Queue Pointer Base Address, bits[15 - 6] respectively.
5 - 0 (LSB)	(LSB) R/W 0		Queue Pointer Address, bits[5 - 0] respectively.

2.27. BC Block Status Word

The Block Status Word in the Message Control / Status Block provides information regarding message status (in process or completed), the bus it was transmitted on, whether errors occurred during the message, and the type of occurring errors. This word is written into RAM by the device after message completion. Because it resides in RAM, the host has read-write access, although this word is usually treated as read-only by the host.

Bit No.	Mnemonic	R/W	Reset	Bit Description		
				End of Message.		
15 (MSB)	EOM	R/W	0	This bit is set upon completion of a BC message, whether or not errors occurred.		
				Start of Message.		
14	SOM	R/W	0	This bit is set at the start of a BC message and cleared at the end of the message.		
				Bus ID (Bus B / Bus A).		
13	BID	R/W	0	This bit is logic "1" if the BC message was transacted on Bus B.		
				This blt is logic "0" if the BC message was transacted on Bus A.		
12	EF	R/W	0	This bit acts as an Error Flag. If EF is logic "1" and some/ all of bits 10, 9 or 8 are also set, it is an indication that one or more of those respective errors occurred in the current message. If EF is logic "1" and all of bits 10, 9 and 8 are zero, then a handshake failure has occurred (applies only to transparent mode).		
				Status Set.		
11				This bit is not affected by the values of mask bits 14-9 in the BC Control Word for the message.		
	STATSET	R/W	0	This bit is logic "1" when the received RT Status Word contains an unexpected bit value in the bit range $10 - 0$. The expected value is usually logic "0", except when broadcast is enabled.		

Bit No.	Mnemonic	R/W	Reset	Bit Description	Bit Description			
				Format Error.				
10	FE	R/W	0	This bit is logic "1" when a received RT response violates MIL-STD-1553 message protocol. This includes sync, word count, encoding, bit count or parity errors.				
				No Response 1	limeout Error.			
9	TOER	R/W	0	This bit is logic the RT-to-RT R RTRTTO[10 - 9	"1" when a rece esponse Timeou 9] in Configuratio	iving RT responded later than ut interval specified by bits on Register #5.		
				Loopback Erro	r.			
8 LBE		R/W	0	Each word transmitted by the BC is looped back to the receiver and checked for 1553 validity (sync, encoding, bit count and/or parity error). In addition, for each message transacted, the received image for the last word transmitted by the BC is evaluated for data match.				
				This bit is logic "1" when the received version for one or more words transmitted by the BC fails 1553 "word validity" criteria, and/or the received version for the last word transmitted by the BC does not match the transmitted Manchester II word.				
				Masked Status Set.				
7	MSTATSET	R/W	0	This bit is logic "1" when one or more of the mask bits 14-9 in the BC Control Word is logic "0" and the corresponding bit is logic "1" in the received RT Status Word.				
				These two bits retried:	indicate the num	nber of times a message was		
				RETRY1	RETRY0	Number of Retries		
6 - 5	RETRY[1:0]	R/W	0	0	0	0		
				0	1	1		
				1	0	2		
				1	1	2		
		DB R/W		Good Transmit	Data Block Tran	isfer.		
4	GDB		0	This bit is set to error-free RT-to mode code me 0 for any BC-to data, or any inc	o logic "1" upon s o-BC message, F ssage with data. o-RT message, n complete or inval	successful completion of an RT-to-RT message, or transmit This bit always resets to logic node code message without lid message.		

Bit No.	Mnemonic	R/W	Reset	Bit Description					
				Wrong RT Address and/or No Gap.					
			0	This bit is logic 1 when one or both of the following conditions occur:					
3	WAG	R/W		 the RT address field within a received RT Status Word does not match the RT address field in the Command Word transmitted by the BC or 					
				 the GTEN Gap Check Enable bit 8 of Configuration Register #5 is set and the RT responds with response time less than 4 µs per MIL-STD-1553B, mid-parity bit to mid-sync, (2 µs bus "dead time"). 					
	LE		0	Word Count (Length) Error.					
2		R/W		This bit is logic 1 when an RT-to-BC message, RT-to-RT message, or transmit mode code message with data is transacted with the wrong number of data words.					
				This bit always resets to logic 0 for BC-to-RT messages, receive mode code messages, or transmit mode code messages without data.					
				Sync Error.					
1	SE	R/W	0	This bit is logic 1 when an RT responds with Data Sync in its Status Word, or with Command/Status Sync in a Data Word.					
				Invalid Word Error.					
0 (LSB)	IWE	R/W	0	This bit is logic 1 when an RT response in one or more words having at least one of the following errors: sync encoding error, Manchester II encoding error, bit count error, parity error.					

2.28. RT and MT Block Status Word

Bit No.	Mnemonic	R/W	Reset	Bit Description					
15 (MSB)	EOM	R/W	0	End of Message. This bit is set upon completion of an RT message, whether or not errors occurred.					
14	SOM	R/W	0	Start of Message. This bit is set at the start of an RT message and cleared at the end of the message.					
13	BID	R/W	0	Bus ID (Bus B / Bus A). This bit is logic "1" if the RT message was transacted on Bus B. This bIt is logic "0" if the RT message was transacted on Bus A.					
12	EF	R/W	0	This bit acts as an Error Flag. If EF is logic "1" and some/ all of bits 10, 9 or 8 (10 and 9 in Message Monitor Mode) are also set, it is an indication that one or more of those respective errors occurred in the current message. If EF is logic "1" and all of bits 10, 9 and 8 (10 and 9 in Message Monitor Mode) are zero, then a handshake failure has occurred (applies only to transparent mode).					
11	RTRTRX	R/W	0	This bit will be set in the RT Block Status Word if the device is the receiving RT in an RT-to-RT transfer. In Message Monitor Mode, this bit will be set to indicate the message was an RT-to-RT transfer.					
10	FE	R/W	0	Format Error. This bit is logic "1" when a received RT response violates MIL-STD-1553 message protocol. This includes sync, word count, encoding, bit count or parity errors.					
9	TOER	R/W	0	No Response Timeout Error. This bit is logic "1" when the device is the receiving RT in an RT-to-RT transfer and the transmitting RT failed to respond, or responded later than the RT-to-RT Response Timeout interval specified by bits RTRTTO[10 – 9] in Configuration Register #5.					

The following block status word applies to both RT and Message Monitor Modes.

Bit No.	Mnemonic	R/W	Reset	Bit Description					
8	LBE	R/W	0	Loopback Error. In RT Mode, this bit will be logic "1" following a loopback error, i.e. when the received version of a transmitted word fails 1553 "word validity" criteria, and/or the received version of the last word transmitted does not match the transmitted Manchester II word. In Message Monitor Mode, this bit will be logic "1" following receipt of a valid message. It will be logic "0" if the message was invalid					
7	CIRRO	R/W	0	CIRRO will be set to logic "1" if the enabled global circular buffer rolls over. This will happen if the upper boundary of the circular buffer is exceeded. If OVINV bit 11 of Configuration register #2 is set to logic "1", the roll over will only occur following receipt of a valid message. Invalid messages will be overwritten and roll over will not occur until the next valid message.					
				set by bits MTDATA[10 – 8] in Configuration Register #3.					
6	ILLCMD	R/W	0	In RT Mode, ILLCMD will be set to logic "1" when an illegal command is received.					
	LE			Word Count (Length) Error.					
5		R/W	0	This bit is logic 1 when an RT-to-BC message, RT-to-RT message, or transmit mode code message with data is transacted with the wrong number of data words.					
				Sync Error.					
4	SE	R/W	0	This bit is logic 1 when an RT responds with Data Sync in its Status Word, or with Command/Status Sync in a Data Word.					
				Invalid Word Error.					
3	IWE	R/W	0	This bit is logic 1 when an RT response in one or more words having at least one of the following errors: sync encoding error, Manchester II encoding error, bit count error, parity error.					
				This bit is set if one of the following occurs during an RT-to-RT transfer:					
				 the RT address of the responding RT does not match the RT address field in the Command Word 					
2	RTRTERR	R/W	0	 the GTEN Gap Check Enable bit 8 of Configuration Register #5 is set and the RT responds with response time less than 4 μs per MIL-STD-1553B, mid-parity bit to mid-sync, (2 μs bus "dead time") 					
				 the responding RT had an invalid status word or wrong sync bit. 					

Bit No.	Mnemonic	R/W	Reset	Bit Description
1	RTRTERR2	R/W	0	This bit is set if the second command word in an RT-to-RT transfer had an error (e.g. wrong T/\overline{R} bit).
0 (LSB)	CWERR	R/W	0	This bit is set if a received Command Word is undefined (violates MIL-STD-1553 rules), e.g. if broadcast is enabled (BCSTDIS bit 7 in Configuration Register #5 is set to logic "0") and a mode command not allowed to be broadcast under 1553 rules (e.g. Transmit Last Command) is sent to subaddress 31.

2.29. Word Monitor Identification Word

The Word Monitor Information Word gives information about the received words stored during Word Monitor Mode operation.

Bit No.	Mnemonic	Bit Description
15 (MSB) – 8	GT[7:0]	Gap Time, bits 7 – 0. If CTDATA, bit 1 is logic "0", then these bits will show the gap time between the start of the current word and the end of the previous word. The resolution is 0.5 μ s/LSB, up to a max of 127.5 μ s.
7	WF	Word Flag, always set to logic "1".
6	RTCMD	If BCST is logic "0", then the received word was a valid RT command (correct sync, RT Address and Parity). Otherwise, RTCMD will be logic "1".
5	BCST	If BCST is logic "0", then the received word was a valid broadcast command with RT address = 31.
4	ERR	This bit will be set to logic "1" if the received word contained an error.
3	SYNC	If SYNC = logic "1", then the received word contained a command sync. If SYNC = logic "0", then the received word contained a data sync.
2	BUSAB	If BUSAB = logic "0", then the word was received on Bus A. If BUSAB = logic "1", then the word was received on Bus B.
1	CTDATA	If CTDATA is logic "1", then previous and next message is contiguous and the gap time bits GT[7:0] above are not used. If CTDATA is logic "0", then the gap time is stored in bits 15 – 8 above.
0 (LSB)	MCODE	If MCODE is logic "0", then the received word was a valid mode code command.

2.30. RT/MT Interrupt Status Queue Word

In Enhanced RT or MT Modes, or combined RT/MT Mode, both the RT and MT have the capability to store interrupt information in the Interrupt Status Queue. A two-word entry is written to the Interrupt Status Queue every time an interrupt event occurs. The first word is the Status Queue Word (see Table 7 and Table 8 below), which describe what event(s) caused the interrupt. Bit 0 will indicate if the interrupt was a message interrupt (bit 0 = logic "1") or a non-message interrupt (bit 0 = logic "0") event. A logic "1" value on any of the other bits indicates that respective interrupt event took place.

The second word stored in the status queue will be a parameter word, indicating where the interrupt came from, e.g. in the case of a Message Interrupt Event, the parameter word will be a pointer to the relevant Block Status Word in the RT or MT descriptor stack.

Table 7. RT/Monitor Interrupt Status Queue Word for Message Interrupt Events

Bit No.	Message Interrupt Event	Parameter Word
15 (MSB)	RT transmitter watchdog timer has timed out.	RT Block Status Word pointer
	In RT Mode, this bit is set when an illegalized command has been received.	
14	In MT Mode, this bit is set when a valid message is received. Note: Bit 7, NOVALMSG of Configuration Register #6 must be logic "0" or this bit will not be set when a valid message is received.	RT/MT Block Status Word pointer
13	The Monitor Data Stack is half-full.	MT Block Status Word pointer
12	The Monitor Data Stack is full and has rolled over.	MT Block Status Word pointer
11	The RT Circular Buffer is half full.	RT Block Status Word pointer
10	The RT Circular Buffer is full and has rolled over.	RT Block Status Word pointer
9	The Monitor Command Stack is half-full.	MT Block Status Word pointer
8	The Monitor Command Stack is full and has rolled over.	MT Block Status Word pointer
7	The RT Command Stack is half-full.	RT Block Status Word pointer
6	The RT Command Stack is full and has rolled over.	RT Block Status Word pointer
5	A Handshake Failure occured between the device and external RAM in Transparent Mode.	RT Block Status Word pointer
4	A 1553 Message Error, loopback failure or response timeout was detected	RT/MT Block Status Word pointer
	A Mode Command has been received.	
3	Note: The mode command must have its interrupt enabled in the Mode Command Interrupt Enable Lookup Table at addresses 0x108 to 0x10F.	RT Block Status Word pointer

Bit No.	Message Interrupt Event	Parameter Word
2	An EOM occurred in a specific RT Subaddress Control Word. Note: The RT must be in Enhanced Memory Management Mode and the appropriate EOM interrupt bit (TXEOM, RXEOM or BCSTEOM) must be set in the RT Subaddress Control Word Register.	RT Block Status Word pointer
1	A message was completed (EOM).	RT/MT Block Status Word pointer
0 (LSB)	Logic "1".	N/A.

Table 8. RT/Monitor Interrupt Status Queue Word for non-Message Interrupt Events

A logic "1" value on any of the bits indicates that respective interrupt event took place.

Bit No.	Non-Message Interrupt Event	Parameter Word
15 (MSB) – 5	No function.	No function.
4	The Time Tag Register value rolled over.	0x0000
3	An RT Address Parity Error occured.	0x0000
2	A Protocol Self-Test was completed.	0x0000
1	A RAM Parity Error occurred.	Address location where parity error occurred.
0 (LSB)	Logic "0".	N/A.

3. Pin Diagrams

Bottom View

DNC	DNC	DNC	nMSTCLR	RT_AD_ LAT	RTAD0	RTAD3	RTAD1	RTADP	D6	D4	D8	D12	D10	nINT	DNC	DNC	DNC	18
DNC	DNC	DNC	16/n8 / nDTREQ	nINCMD	TRIG_SEL /n MEM- ENA_IN	+3.3V_ LOGIC	+3.3V_ LOGIC	D0	D2	D5	D3	D7	D11	TRANS / nBUFF	DNC	DNC	DNC	17
DNC	DNC	DNC	DNC	DNC	DNC	+3.3V_ LOGIC	+3.3V_ LOGIC	D1	RTAD2	DNC	DNC	D9	D13	D15	DNC	DNC	DNC	16
DNC	DNC	DNC	DNC	DNC	DNC	DNC	DNC	DNC	RTAD4	DNC	DNC	D14	DNC	DNC	A10	nREADYD	nIOEN	15
DNC	DNC	DNC	DNC	DNC	DNC	DNC	RSTBITEN	DNC	DNC	DNC	DNC	TAG_ CLK	DNC	n SNGL_END / DNC	DNC	TX_ INH_B	TX_ INH_A	14
DNC	GND	GND	GND	+3.3V_ LOGIC	+3.3V_ LOGIC	DNC	DNC	DNC	DNC	DNC	DNC	DNC	DNC	DNC	DNC	DNC	DNC	13
DNC	GND	GND	GND	+3.3V_ LOGIC	+3.3V_ LOGIC	DNC	DNC	DNC	DNC	GND	GND	GND	GND	DNC	A5	nSELECT	nSTRBD	12
DNC	GND	GND	GND	DNC	DNC	DNC	DNC	DNC	DNC	GND	GND	GND	GND	nMCRST	DNC	RD / nWR	A15 ¹ or A15 / CLK_ SEL_1 ²	11
DNC	ADDR_LAT / nMEMOE	CLOCK _IN	RXDATA _IN_B	n RXDATA _IN_B	DNC	DNC	DNC	DNC	DNC	GND	GND	GND	GND	A8	A9	A13 ¹ or A13 / Logic "1" ²	A12 ¹ or A12 / nRE- BOOT ²	10
A6	DNC	DNC	RXDATA _OUT_B	n RXDATA _OUT_B	DNC	DNC	DNC	DNC	DNC	DNC	DNC	DNC	A3	A7	A2	+3.3V_ LOGIC	+3.3V_ LOGIC	9
POL_SEL / nDTACK	A1	nZERO- WAIT / nMEMWR	nSSFLAG / EXT_TRIG	DNC	TXINH _OUT_B	n TXDATA _OUT_B	TXDATA _OUT_B	DNC	DNC	RXDATA _IN_A	n RXDATA _IN_A	A0	TXINH _OUT_A	n TXDATA _OUT_A	TXDATA _OUT_A	+3.3V_ LOGIC	+3.3V_ LOGIC	8
+3.3V_ LOGIC	+3.3V_ LOGIC	+3.3V_ LOGIC	+3.3V_ LOGIC	DNC	TXINH _IN_B	n TXDATA _IN_B	TXDATA _IN_B	DNC	DNC	RXDATA _OUT_A	n RXDATA _OUT_A	UPADDR- EN	TXINH _IN_A	n TXDATA _IN_A	TXDATA _IN_A	A4	A14 ¹ or A14 / CLK_ SEL_0 ²	7
+3.3V_ LOGIC	+3.3V_ LOGIC	+3.3V_ LOGIC	+3.3V_ LOGIC	DNC	DNC	DNC	DNC	DNC	DNC	DNC	DNC	DNC	A11	DNC	DNC	MSB/LSB / nDTGRT	MEM / nREG	6
+3.3V_ XCVR	+3.3V_ XCVR	DNC	DNC	GND	GND	GND	GND	+3.3V_ XCVR	+3.3V_ XCVR	DNC	GND	GND	GND	GND	DNC	+3.3V_ XCVR	+3.3V_ XCVR	5
+3.3V_ XCVR	+3.3V_ XCVR	DNC	SLEEPIN	GND	GND	GND	GND	+3.3V_ XCVR	+3.3V_ XCVR	DNC	GND	GND	GND	GND	DNC	+3.3V_ XCVR	+3.3V_ XCVR	4
DNC	DNC	DNC	DNC	GND	GND	GND	GND	+3.3V_ XCVR	+3.3V_ XCVR	DNC	GND	GND	GND	GND	DNC	DNC	DNC	3
DNC	DNC	DNC	n TX/RX- B	n TX/RX- B	GND	TX/RX- B	TX/RX- B	+3.3V_ XCVR	+3.3V_ XCVR	n TX/RX- A	n TX/RX- A	GND	TX/RX- A	TX/RX- A	DNC	DNC	DNC	2
DNC	DNC	DNC	n TX/RX- B	n TX/RX- B	GND	TX/RX- B	TX/RX- B	+3.3V_ XCVR	+3.3V_ XCVR	n TX/RX- A	n TX/RX- A	GND	TX/RX- A	TX/RX- A	DNC	DNC		1
V	U	Т	R	Р	N	М	L	К	J	Н	G	F	Е	D	С	В	А	

Notes:

1. 64K RAM option.

2. 4K RAM option.

3. Prefix "n" denotes an inverted or negative signal, e.g. nRXDATA_IN_A = RXDATA_IN_A, etc.

Figure 1. HI-621x3PBx (3.3V Transceiver) BGA Package Pinout

Bottom View

DNC	DNC	DNC	DNC	DNC	DNC	RSTBITEN	RT_AD_ LAT	RTAD1	RTADP	D2	D6	D8	D12	TAG_ CLK	DNC	DNC	DNC	18
DNC	DNC	DNC	DNC	DNC	DNC	DNC	RTAD2	RTAD3	D1	D0	D4	D7	D14	nINT	DNC	DNC	DNC	17
DNC	DNC	DNC	DNC	DNC	DNC	DNC	+5.0V / +3.3V_ LOGIC	RTAD0	RTAD4	nINCMD	D5	D10	D13	TRANS / nBUFF	DNC	DNC	DNC	16
n TX/RX- B	n TX/RX- B	GND	GND	GND	DNC	DNC	+5.0V / +3.3V_ LOGIC	DNC	DNC	DNC	D3	D9	D11	D15	nREADYD	DNC	n SNGL_ END	15
n TX/RX- B	GND	GND	GND	GND	RXDATA _OUT_B	n RXDATA _OUT_B	DNC	DNC	DNC	GND	GND	GND	GND	DNC	nIOEN	DNC	TX_ INH_A	14
+5.0V_ XCVR	+5.0V_ XCVR	GND	GND	GND	RXDATA _IN_B	n RXDATA _IN_B	DNC	DNC	DNC	GND	GND	GND	GND	DNC	TX_ INH_B	nMCRST	nVDD_ LOW	13
TX/RX- B	GND	GND	GND	GND	n TXDATA _IN_B	n TXDATA _OUT_B	DNC	DNC	DNC	GND	GND	GND	GND	DNC	UPADDR- EN	nSELECT	nSTRBD	12
TX/RX- B	TX/RX- B	GND	GND	GND	DNC	DNC	TRIG_SEL / n MEM- ENA_IN	DNC	DNC	DNC	DNC	DNC	DNC	DNC	MEM / nREG	nMSTCLR	RD / nWR	11
DNC	DNC	DNC	TXDATA _IN_B	TXDATA _OUT_B	DNC	nZERO- WAIT / nMEMWR	16/n8 / nDTREQ	DNC	DNC	DNC	DNC	A0	n RXDATA _OUT_A	n RXDATA _IN_A	A15 ¹ or A15 / CLK_ SEL_1 ²	A13 ¹ or A13 / Logic "1" ²	A14 ¹ or A14 / CLK_ SEL_0 ²	10
DNC	DNC	DNC	+5.0V / +3.3V_ LOGIC	+5.0V / +3.3V_ LOGIC	POL_SEL / nDTACK	CLOCK _IN	ADDR_LAT / nMEMOE	DNC	DNC	DNC	DNC	RXDATA _OUT_A	RXDATA _IN_A	DNC	A8	A11	A12 ¹ or A12 / nRE- BOOT ²	9
+5.0V / +3.3V_ LOGIC	DNC	TXINH _IN_B	TXINH _OUT_B	DNC	DNC	DNC	DNC	DNC	nSSFLAG / EXT_TRIG	DNC	DNC	DNC	A2	A4	TXDATA _IN_A	TXDATA _OUT_A	A10	8
DNC	DNC	DNC	DNC	+5.0V / +3.3V_ LOGIC	DNC	DNC	DNC	DNC	MSB/LSB / nDTGRT	DNC	DNC	DNC	A1	A6	A7	A9	+5.0V / +3.3V_ LOGIC	7
DNC	DNC	DNC	DNC	DNC	DNC	DNC	DNC	DNC	DNC	DNC	DNC	DNC	DNC	A3	A5	DNC	DNC	6
DNC	DNC	DNC	DNC	DNC	DNC	DNC	DNC	DNC	DNC	GND	GND	GND	GND	GND	n TXDATA _OUT_A	DNC	TXINH _OUT_A	5
DNC	DNC	DNC	+5.0V_ RAM ¹ or DNC ²	+5.0V_ RAM ¹ or DNC ²	DNC	DNC	DNC	DNC	DNC	GND	GND	GND	GND	GND	n TXDATA _IN_A	DNC	TXINH _IN_A	4
DNC	DNC	DNC	DNC	DNC	DNC	+5.0V / +3.3V_ LOGIC	DNC	DNC	DNC	GND	GND	GND	GND	GND	DNC	DNC	DNC	3
DNC	DNC	DNC	DNC	DNC	DNC	DNC	+5.0V / +3.3V_ LOGIC	DNC	DNC	n TX/RX- A	GND	+5.0V_ XCVR	GND	TX/RX- A	DNC	DNC	DNC	2
DNC	DNC	DNC	DNC	DNC	DNC	DNC	+5.0V / +3.3V_ LOGIC	DNC	DNC	n TX/RX- A	n TX/RX- A	+5.0V_ XCVR	TX/RX- A	TX/RX- A	DNC	DNC		1
V	U	Т	R	Р	N	М	L	К	J	Н	G	F	Е	D	С	В	А	

Notes:

1. 64K RAM option.

2. 4K RAM option.

3. Prefix "n" denotes an inverted or negative signal, e.g. nRXDATA_IN_A = RXDATA_IN_A, etc.

Figure 2. HI-621x5PBx and HI-62106PBx, (5.0V Transceiver) BGA Package Pinout

Figure 3. HI-621xxCx Gull Wing or Flat Pack Package Pinouts (All Variants)

4. Signal Descriptions – Ball Grid Array Packages

Table 9. Power and C	Ground
----------------------	--------

Ball Name	Function	Description
DNC	Do Not Connect	These balls MUST be left unconnected.
+3.3V_XCVR	Power Supply	+3.3V DC power supply for bus transceiver ¹ .
+3.3V_LOGIC	Power Supply	+3.3V DC power supply for digital logic ¹ .
+5.0V_XCVR	Power Supply	+5.0V DC power supply for bus transceiver ² .
+ 5.0V / + 3.3V_LOGIC	Power Supply	+5.0V or +3.3V DC power supply for digital logic ³ .
+ 5.0V_RAM	Power Supply	+5.0V DC power supply for RAM (HI-62105PBx only) ^₄ .
GND	Power Supply	Power supply ground.
VDD_LOW	Power Supply	Connecting this input has no effect.

Notes

- 1. HI-621x3PBx only.
- 2. HI-621x5PBx or HI-62106PBx only.
- 3. These balls support both 3.3V or 5V logic supplies (HI-621x5PBx or HI-62106PBx only).
- 4. Must be connected to +5.0V.

Table 10. MIL-STD-1553 Bus Interface

Signal Name	Function	Description
TX/RX-A	Analog I/O	Bi-directional Bus A interface to external MIL-STD-1553
TX/RX-A	Analog I/O	isolation transformer. Observe positive / negative polarity.
TX/RX-B	Analog I/O	Bi-directional Bus B interface to external MIL-STD-1553
TX/RX-B	Analog I/O	isolation transformer. Observe positive / negative polarity.

Table 11. External Transceiver Interface

Important Note: When using the integrated internal transceivers, the connections outlined in the table below are **mandatory**.

Signal Name	Function	Description	
		This signal should be left unconnected to use device internal transceivers.	
SNGL_END	Digital	When using external transceivers, this input controls whether the Manchester decoder inputs accepts single-ended or double-ended input signals.	
	mput	For standard MIL-STD-1553 double-ended bi-phase operation, this signal should be connected to logic "1". For single-ended, connect to logic "0".	
TXINH_IN_A	Digital Input	These two signals must be tied together when using device internal transceivers.	
TXINH_OUT_A	Digital Output	of external MIL-STD-1553 transceiver. Transmission on Bus A will be inhibited when asserted high. The TXINH_IN_A input may be left floating (internal pull-up).	
TXDATA_IN_A	Digital Input	These two signals must be tied together when using device internal transceivers.	
TXDATA_OUT_A	Digital Output	input of a MIL-STD-1553 transceiver. TXDATA_IN_A is not used and may be left floating (internal pull-up).	
TXDATA_IN_A	Digital Input	These two signals must be tied together when using device internal transceivers.	
TXDATA_OUT_A	Digital Output	input of a MIL-STD-1553 transceiver. TXDATA_IN_A is not used and may be left floating (internal pull-up).	
RXDATA_IN_A	Digital Input	These two signals must be tied together when using device internal transceivers.	
RXDATA_OUT_A	Digital Output	output of a MIL-STD-1553 transceiver. RXDATA_OUT_A is not used and may be left floating (internal pull-up).	
RXDATA_IN_A	Digital Input	These two signals must be tied together when using device internal transceivers.	
RXDATA_OUT_A	Digital Output	output of a MIL-STD-1553 transceiver. RXDATA_OUT_A is not used and may be left floating (internal pull-up).	
TXINH_IN_B	Digital Input	These two signals must be tied together when using device internal transceivers.	
TXINH_OUT_B	Digital Output	of external MIL-STD-1553 transceiver. Transmission on Bus B will be inhibited when asserted high. TXINH_IN_B input may be left floating (internal pull-up).	
TXDATA_IN_B	Digital Input	These two signals must be tied together when using device internal transceivers.	
TXDATA_OUT_B	Digital Output	input of a MIL-STD-1553 transceiver. TXDATA_IN_B is not used and may be left floating (internal pull-up).	
TXDATA_IN_B	Digital Input	These two signals must be tied together when using device internal transceivers.	
TXDATA_OUT_B	Digital Output	input of a MIL-STD-1553 transceiver. TXDATA_IN_B is not used and may be left floating (internal pull-up).	

Signal Name	Function	Description
RXDATA_IN_B	Digital Input	These two signals must be tied together when using device internal transceivers.
RXDATA_OUT_B	Digital Output	output of a MIL-STD-1553 transceiver. RXDATA_OUT_B is not used and may be left floating (internal pull-up).
RXDATA_IN_B	Digital Input	These two signals must be tied together when using device internal transceivers.
RXDATA_OUT_B	Digital Output	output of a MIL-STD-1553 transceiver. RXDATA_OUT_B is not used and may be left floating (internal pull-up).

Signal Name	Function	Description			
D15 (MSB) - D0 (LSB)	Data inputs or Data outputs	Bi-directional data bus for host read/write operations on registers and RAM.			
A15 (MSB) - A0 (LSB)	Digital inputs	For 64K RAM devices these signals function as the address bus for host read/ write operations on registers and RAM.		s bus for host read/	
		For 4K RAM devices, the function of these signals depends on the value of UPADDREN.			
A15/CLK SEL 1		If UPADDREN = Logic "1", these signals are address lines.	If UPADDREN = as CLK_SEL_1 a frequency as follo	If UPADDREN = Logic "0", these signals function as CLK_SEL_1 and CLK_SEL_0 and set the clock frequency as follows:	
	Digital Input		CLK_SEL_1	CLK_SEL_0	Clock Frequency
			0	0	10 MHz
		A15 – A14	0	1	20 MHz
			1	0	12 MHz
			1	1	16 MHz
		For 4K RAM devices, the function of this signal depends on the value of UPADDREN.			
A13 / LOGIC "1"	Digital Input	If UPADDREN = Logic "1", this signal functions as address line A13.			
		If UPADDREN = Logic "0", this signal MUST be connected to +V_LOGIC.			
		For 4K RAM devices, the function of this signal depends on the value of UPADDREN.			n the value of
A12 / RTBOOT		If UPADDREN = Logic "1", this signal functions as address line A12.			
		If UPADDREN = Logic "0", this signal functions as RTBOOT. as follows:			
	Digital Input	RTBOOT = Logic "1"		RTBOOT = Lo	ogic "0"
		For an RT-only device, the device will initialize in Idle mode.		Enable MIL-S	D-1760 operation
		For a BC/RT/MT device, the device will initialize with the busy bit set in the RT Status Word).			
A11 – A0 (LSB)	Digital Input	Lower 12 bits of 16-bit bi-directional address bus.			

Table 12. Host Address and Data Buses

Signal Name	Function	Description		
SELECT	Digital Input	The Host sets this signal to logic "0" to select the device for a transfer to / from RAM (or registers).		
STRBD	Digital Input	This signal is used by the host with the SELECT signal to initiate data transfers to / from the device. STRBD must remain low during the data transfer cycle.		
RD / WR	Digital Input	Read/Write. RD/WR specifies reading or writing between the host. The polarity depends on the state of the POL_SEL signal (see below).		
ADDR_LAT or	Digital Input or	When in buffered mode, this signal is an input and functions as ADDR_LAT. When ADDR_LAT transitions low, it latches the values on A15 – A0, SELECT, MEM / REG, and MSB / LSB. When ADDR_LAT is high, the values of these signals track the respective inputs.		
MEMOE	Digital Output	When in transparent mode, this signal is an output and functions as $\overline{\text{MEMOE}}$. It is used to enable external RAM reads and should be connected to the $\overline{\text{OE}}$ input signal on an external RAM.		
ZEROWAIT	Digital Input or	When in buffered mode, this signal is an input and functions as ZEROWAIT as follows; ZEROWAIT = "0" specifies zero wait mode, ZEROWAIT = "1" specifies nor zero wait mode.		
MEMWR	Digital Output	When in transparent mode, this signal is an output and functions as MEMWR. It is used in transparent mode for external RAM data transfers and should be connected to the WR input signal on the external RAM.		
16 / 8 or	Digital Input or	When in buffered mode, this signal is an input and functions as $16 / \overline{8}$. It is used to specify 16 bit data mode (16 / $\overline{8}$ = "1") or 8-bit data mode (16 / $\overline{8}$ = "0"). When in transparent mode, this signal is an output and functions as DTREQ (Data		
DTREQ	Digital Output	Transfer Request). It is used by the device to request access to the host address and data buses. The handshake is complete when the DTGRT (Data Transfer Grant) signal is asserted in response.		
MSB / LSB or	Digital Input or	When in buffered mode (8-bit only), this signal is an input and functions as (MSB / LSB). It is used to indicate whether the MSB or LSB is currently being transferred. The polarity of MSB / LSB is controlled by the POL SEL input (see below).		

Table 13. Ho	ost Interface
--------------	---------------

DTGRT

Digital Input

When in transparent mode, this signal is an input and functions as the $\overline{\text{DTGRT}}$ signal. It completes the handshake following a $\overline{\text{DTREQ}}$ request and is asserted to indicate

that control of the host address and data buses have been released to the device.

Signal Descriptions – Ball Grid Array Packages

Signal Name	Function	Description		
		Polarity Select When in buffe mode, it contr polarity of the	ct or Data Transfer Bus Acknowledgered mode, this signal is an input arrols the polarity of the RD / WR signed MSB / LSB signal as follows:	ge. nd functions as POL_SEL. In 16-bit nal and in 8-bit mode it controls the
POL SEL	Digital Input	POL_SEL	16-bit buffered mode	8-bit-buffered mode
	Digital impat	1	Assert RD / \overline{WR} = 1 for RD. Assert RD / \overline{WR} = 0 for WR.	Assert MSB / LSB = 1 for LSB. Assert MSB / LSB = 0 for MSB.
or	or	0	Assert RD / WR = 0 for RD. Assert RD / WR = 1 for WR.	Assert MSB / LSB = 0 for LSB. Assert MSB / LSB = 1 for MSB.
DTACK	Digital Output	When in trans asserted to a device has ac	sparent mode, this signal is an outp cknowledge a data transfer grant (ccepted control of the host address	but and functions as $\overline{\text{DTACK}}$. It is $\overline{\text{DTGRT}}$) and indicates that the and data buses.
		In 8-bit buffered mode, this signal is an input and functions as TRIG-SEL. It is used to select the "endianness" (byte order) of 16-bit word transfers to or from the device as follows:		
	Disital lass t	TRIG_SEL	8-bit buffered mode	16-bit buffered mode
TRIG_SEL	Digital Input	1	MSB followed by LSB.	No function. May be left unconnected.
or	or	0	LSB followed by MSB.	No function. May be left unconnected.
MEMENA_IN	Digital Input	When in trans used as a Ch NOTE: If only output of a O	sparent mode, this signal is an inpu ip Select input to the internal RAM. / internal RAM is used, MEMENA_ R Gate which has DTACK and IOE	It and functions as $\overline{\text{MEMENA}_{IN}}$. It is \overline{IN} should be connected directly to the \overline{IN} as inputs.
MEM/ REG	Digital Input	This input is u MEM / REG = MEM / REG =	used by the host to notify the device = "1" for memory access or = "0" for register access.	e of memory or register access.

Signal Name	Function	Description				
SSFLAG	Digital Input	Subsystem Flag (RT) or External Trigger input. In RT mode, this signal functions as SSFLAG. If asserted (logic "0"), the Subsystem Flag bit will be set in the transmitted RT Status Word. In BC or MT modes, this signal functions as an External Trigger as follows.				
or	or					
		BCT				
		Non-Enhanced Mode (Legacy)	No function.			
		Enhanced Mode (Legacy)	If the external trigger is enabled by setting bit 7 in Configuration Register #1, a low-to-high transition on EXT_TRIG will initiate a BC Start.			
EXT_TRIG	Digital Input	Enhanced Mode	When a Wait for External Trigger (WTG) instruction is executed, the BC will wait for a low-to-high transition on EXT_TRIG before executing the next instruction.			
		MT Mode				
		Word Monitor	If the external trigger is enabled by setting bit 7 in Configuration Register #1, a low-to-high transition on EXT_TRIG will start monitor operation.			
		Message Monitor	No effect.			
TRANSPARENT / BUFFERED	Digital Input	Transparent or Buffered Mode Selection TRANSPARENT / BUFFERED = "0" for Buffered Mode or TRANSPARENT / BUFFERED = "1" for Transparent Mode				
		This output indicates to the host processor to or from the device respectively.	the status or availability of data transferred			
READYD	Digital Output	The host will initiate a transfer cycle by ass ready the device will assert READYD low, complete. The host will then assert STRBD to logic "1", indicating that the device is rea	erting STRBD low. When the data is indicating to the host that the transfer is b high, following which READYD will return ady for the next transfer.			
		I/O Enable.				
IOEN	Digital Output	This output allows tri-state control for exter asserted low during data transfer cycles ar high ending the current transfer.	nal addresses and data buffers. It is id remains low until STRBD is asserted			

Signal Name	Function	Description		
RTAD4 (MSB)	Digital Input	RT Address Input signals. NOTE: The RT address and parity may be programmed by software if bit 5 of Configuration Register #6 (RTADSRC) is set to logic "1". In this case, the RT Address and Parity are provided by the Host via data lines D5 – D0 and RTAD4:0 (and RTADP below) are not used.		
RTAD3	Digital Input			
RTAD2	Digital Input			
RTAD1	Digital Input			
RTAD0 (LSB)	Digital Input			
RTADP	Digital Input	Remote Terminal Address Parity.		
	Digital Input	RT Address Latch. This input signal is used to control how the RT address is latched internally. If RT_AD_LAT is logic "0", then the RT address and parity will simply track RTAD4:0 and RTADP inputs.		
		If RT_AD_LAT transitions from logic "0" to logic "1", the values on RTAD4:0 and RTADP will then be latched on the rising edge of RT_AD_LAT.		
RT_AD_LAT		If RT_AD_LAT is connected to log control, and depends on the value follows:	ic "1", then the RT address is latched under software of bit 5 of Configuration Register #6 (RTADSRC) as	
		RTADSRC bit 5 value	RT Address latch control when RT_AD_LAT = 1	
		Logic "0" (Default)	The RT address and parity will be latched directly from the RTAD4:0 and RTADP input signals.	
	Log		RT address parity will be provided by the host by writing via the data bus inputs D5 – D1 for the address and D0 for parity.	
		Logic "1"	Note: Bit 3 of Configuration Register #4 (RTLATEN) must be written logic "1" while the RT address and parity are written via D5 – D0 to the lower 6 bits of Configuration Register #5 (RTAD[4:0] and RTADP (LSB)).	

Table 14. RT Address

Signal Name	Function	Description
UPADDREN	Digital Input	This input signal is used only for 4K device options to control the function of the 4 address inputs A15 – A12. See previous descriptions for A15 – A12. Note: For 64K devices, connecting this signal has no effect.
SLEEPIN	Digital Input	Connecting this input has no effect.
INCMD	Digital Output	INCMD is asserted low whenever a message is in progress. In Word Monitor mode, INCMD remains low while the mode is active.
MCRST	Digital Output	When in RT mode, this output will be asserted low for two clock cycles when a Reset Remote Terminal mode command is received.
RSTBITEN	Digital Input	If this input is set to logic "1", the Built-In-Self-Test feature will be enabled after a hardware reset. If this input is set to logic "0", automatic BIST is disabled.
ĪNT	Digital Output	 Interrupt Request. If Configuration Register #2, bit 3 LEVEL is logic "0", the interrupt request output on INT will be a negative pulse of about 500 ns. If LEVEL is logic "1", the interrupt request output on INT will be a LOW continuous level. To clear the interrupt, one of following events should occur: 1. Logic "1" should be written to bit 2 of the Start/Reset Register (INTRST); or 2. If bit 4 of Configuration Register #2 (CLRSTAT) is logic "1", then reading the Interrupt Status Register will clear INT. NOTE: In cases where both Interrupt Status Registers #1 and #2 have bits set, both registers must be read in order to clear INT.
CLOCK_IN	Digital Input	20 MHz, 16 MHz, 12 MHz, or 10 MHz clock input.
TX_INH_A	Digital Input	Transmit inhibit inputs for Bus A and Bus B, active high. These two inputs enable
TX_INH_B	Digital Input	all enabled 1553 devices.
MSTCLR	Digital Input	Master Reset, active low.
TAG_CLK	Digital Input	Time Tag Clock. This optional clock input may be used to increment the Time Tag Register. It is enabled by setting Bits 7, 8 and 9 of Configuration Register #2 (TTRES[9:7]) to [111].

Table 15. Other Signals

5. Pin Descriptions – Gull Wing Packages

Table 16. Power and Ground

Signal Name	Function	Description
+3.3V_XCVR	Power Supply	+3.3V DC power supply for bus transceiver.
+5.0V_XCVR	Power Supply	+5.0V DC power supply for bus transceiver.
+3.3V_LOGIC	Power Supply	+3.3V DC power supply for digital logic.
+ 5.0V_LOGIC	Power Supply	+5.0V DC power supply for digital logic.
GND	Power Supply	Power supply ground.

Table 17. MIL-STD-1553 Bus Interface

Signal Name	Function	Description	
TX/RX-A	Analog I/O	Bi-directional Bus A interface to external MIL-STD-1553 isolation transform	
TX/RX-A	Analog I/O	Observe positive / negative polarity.	
TX/RX-B	Analog I/O	Bi-directional Bus B interface to external MIL-STD-1553 isolation	
TX/RX-B	Analog I/O	transformer. Observe positive / negative polarity.	

Signal Name	Function		Description					
D15 (MSB) - D0 (LSB)	Data inputs or Data outputs	3i-directional data bus for host read/write operations on registers and RAM.						
A15 (MSB) - A0 (LSB)	Digital inputs	For 64K RAM devices write operations on re	For 64K RAM devices these signals function as the address bus for host read/ write operations on registers and RAM.					
		For 4K RAM devices, the function of these signals depends on the value of UPADDREN.						
		If UPADDREN = Logic "1", these signals are address lines.	If UPADDREN = Logic "0", these signals function as CLK_SEL_1 and CLK_SEL_0 and set the clock frequency as follows:					
and A14/CLK SEL 0	Digital Input		CLK_SEL_1	CLK_SEL_0	Clock Frequency			
AI47 OLK_SEL_U			0	0	10 MHz			
		A15 – A14	0	1	20 MHz			
			1	0	12 MHz			
			1	1	16 MHz			
	Digital Input	For 4K RAM devices, the function of this signal depends on the value of UPADDREN.						
A13 / LOGIC "1"		If UPADDREN = Logic "1", this signal functions as address line A13.						
		If UPADDREN = Logic "0", this signal MUST be connected to +V_LOGIC.						
		For 4K RAM devices, the function of this signal depends on the value of UPADDREN.						
		If UPADDREN = Logic "1", this signal functions as address line A12.						
		If UPADDREN = Logic "0", this signal functions as RTBOOT. as follows:						
A12 / RTBOOT	Digital Input	RTBOOT = Logic "1"		RTBOOT = Logic "0"				
		For an RT-only device, the device will initialize in Idle mode.		Enable MIL-S	TD-1760 operation			
		For a BC/RT/MT de will initialize in BC r	For a BC/RT/MT device, the device will initialize in BC mode. (the RT will initialize with the busy bit set in the RT Status Word).					
A11 - A0 (LSB)	Digital Input	Lower 12 bits of 16-bit bi-directional address bus.						

Table 18. Host Address and Data Buses

Signal Name	Function	Description
SELECT	Digital Input	The Host sets this signal to logic "0" to select the device for a transfer to / from RAM (or registers).
STRBD	Digital Input	This signal is used by the host with the SELECT signal to initiate data transfers to / from the device. STRBD must remain low during the data transfer cycle.
RD / WR	Digital Input	Read/Write. RD/WR specifies reading or writing between the host. The polarity depends on the state of the POL_SEL signal (see below).
ADDR_LAT or	Digital Input or	When in buffered mode, this signal is an input and functions as ADDR_LAT. When ADDR_LAT transitions low, it latches the values on A15 – A0, SELECT, MEM / REG, and MSB / LSB. When ADDR_LAT is high, the values of these signals track the respective inputs.
MEMOE	Digital Output	When in transparent mode, this signal is an output and functions as $\overline{\text{MEMOE}}$. It is used to enable external RAM reads and should be connected to the $\overline{\text{OE}}$ input signal on an external RAM.
ZEROWAIT or	Digital Input or	When in buffered mode, this signal is an input and functions as ZEROWAIT as follows; ZEROWAIT = "0" specifies zero wait mode, ZEROWAIT = "1" specifies non-zero wait mode.
MEMWR	Digital Output	When in transparent mode, this signal is an output and functions as MEMWR. It is used in transparent mode for external RAM data transfers and should be connected to the WR input signal on the external RAM.
16 / 8 or	Digital Input or	When in buffered mode, this signal is an input and functions as $16 / \overline{8}$. It is used to specify 16 bit data mode (16 / $\overline{8}$ = "1") or 8-bit data mode (16 / $\overline{8}$ = "0").
DTREQ	Digital Output	Transfer Request). It is used by the device to request access to the host address and data buses. The handshake is complete when the DTGRT (Data Transfer Grant) signal is asserted in response.
MSB / LSB or	Digital Input or	When in buffered mode (8-bit only), this signal is an input and functions as (MSB / LSB). It is used to indicate whether the MSB or LSB is currently being transferred. The polarity of MSB / LSB is controlled by the POL_SEL input (see below).
DTGRT	Digital Input	When in transparent mode, this signal is an input and functions as the DTGRT signal. It completes the handshake following a DTREQ request and is asserted to indicate that control of the host address and data buses have been released to the device.

Table 19. I	Host In	terface
-------------	---------	---------

Signal Name	Function		Descriptio	n			
		Polarity Select When in buffer mode, it contr polarity of the	Polarity Select or Data Transfer Bus Acknowledge. When in buffered mode, this signal is an input and functions as POL_SEL. In 16-bit mode, it controls the polarity of the RD / WR signal and in 8-bit mode it controls the polarity of the MSB / LSB signal as follows:				
POL SEL	Digital Input	POL_SEL	16-bit buffered mode	8-bit-buffered mode			
	_		Assert RD / \overline{WR} = 1 for RD. Assert RD / \overline{WR} = 0 for WR.	Assert MSB / LSB = 1 for LSB. Assert MSB / LSB = 0 for MSB.			
or	or	0	Assert RD / WR = 0 for RD. Assert RD / WR = 1 for WR.	Assert MSB / LSB = 0 for LSB. Assert MSB / LSB = 1 for MSB.			
DTACK	Digital Output	When in trans asserted to ac device has ac	When in transparent mode, this signal is an output and functions as DTACK. It is asserted to acknowledge a data transfer grant (DTGRT) and indicates that the device has accepted control of the host address and data buses.				
		In 8-bit buffered mode, this signal is an input and functions as TRIG-SEL. It is used to select the "endianness" (byte order) of 16-bit word transfers to or from the device as follows:					
	Digital Input	TRIG_SEL 8-bit buffered mode 16-bit buffered mode					
TRIG_SEL	Digital input	1	MSB followed by LSB.	No function. May be left unconnected.			
or	or	0	LSB followed by MSB.	No function. May be left unconnected.			
MEMENA_IN	Digital Input	When in transparent mode, this signal is an input and functions as <u>MEMENA_IN</u> . It is used as a Chip Select input to the internal RAM. NOTE: If only internal RAM is used, <u>MEMENA_IN</u> should be connected directly to the output of a OR Gate which has <u>DTACK</u> and <u>IOEN</u> as inputs					
MEM/ REG	Digital Input	This input is used by the host to notify the device of memory or register access. MEM / $\overline{\text{REG}}$ = "1" for memory access or MEM / $\overline{\text{REG}}$ = "0" for register access.					

Signal Name	Function	Description				
SSFLAG	Digital Input or	Subsystem Flag (RT) or External Trigger input. In RT mode, this signal functions as SSFLAG. If asserted (logic "0"), the Subsy Flag bit will be set in the transmitted RT Status Word. In BC or MT modes, this signal functions as an External Trigger as follows. BC Mode				
		BC	Mode			
		Non-Enhanced Mode (Legacy)	No function.			
	Digital Input	Enhanced Mode (Legacy)	If the external trigger is enabled by setting bit 7 in Configuration Register #1, a low-to-high transition on EXT_TRIG will initiate a BC Start.			
EXT_TRIG		Enhanced Mode	When a Wait for External Trigger (WTG) instruction is executed, the BC will wait for a low-to-high transition on EXT_TRIG before executing the next instruction.			
		MT Mode				
		Word Monitor	If the external trigger is enabled by setting bit 7 in Configuration Register #1, a low-to-high transition on EXT_TRIG will start monitor operation.			
		Message Monitor	No effect.			
TRANSPARENT / BUFFERED	Digital Input	Transparent or Buffered Mode Selection TRANSPARENT / BUFFERED = "0" for Buffered Mode or TRANSPARENT / BUFFERED = "1" for Transparent Mode				
READYD Digital Out		This output indicates to the host processor the status or availability of data transferr to or from the device respectively. The host will initiate a transfer cycle by asserting STRBD low. When the data is ready the device will assert READYD low, indicating to the host that the transfer is complete. The host will then assert STRBD high, following which READYD will retur to logic "1", indicating that the device is ready for the next transfer.				

Signal Name	Function	Description
ĪOEN	Digital Output	I/O Enable. This output allows tri-state control for external addresses and data buffers. It is asserted low during data transfer cycles and remains low until STRBD is asserted high ending the current transfer.

Table 20. RT Address

Signal Name	Function		Description				
RTAD4 (MSB)	Digital Input						
RTAD3	Digital Input	BT Address Input signals.					
RTAD2	Digital Input	NOTE: The RT address and parity Register #6 (RTADSRC) is set to I	may be programmed by software if bit 5 of Configuration ogic "1". In this case, the RT Address and Parity are				
RTAD1	Digital Input	provided by the Host via data lines	s D5 – D0 and RTAD4:0 (and RTADP below) are not used.				
RTAD0 (LSB)	Digital Input						
RTADP	Digital	Remote Terminal Address Parity.					
	Input	Used to provide odd parity for the	RT address on RTAD[4:0].				
		RT Address Latch.					
		This input signal is used to control how the RT address is latched internally. If RT_AD_LAT is logic "0", then the RT address and parity will simply track RTAD4:0 and RTADP inputs.					
		If RT_AD_LAT transitions from logic "0" to logic "1", the values on RTAD4:0 and RTADP will then be latched on the rising edge of RT_AD_LAT.					
		If RT_AD_LAT is connected to log control, and depends on the value follows:	ic "1", then the RT address is latched under software of bit 5 of Configuration Register #6 (RTADSRC) as				
RT_AD_LAT	T Digital Input	RTADSRC bit 5 value	RT Address latch control when RT_AD_LAT = 1				
		Logic "0" (Default)	The RT address and parity will be latched directly from the RTAD4:0 and RTADP input signals.				
			RT address parity will be provided by the host by writing via the data bus inputs D5 – D1 for the address and D0 for parity.				
		Logic "1"	Note: Bit 3 of Configuration Register #4 (RTLATEN) must be written logic "1" while the RT address and parity are written via D5 – D0 to the lower 6 bits of Configuration Register #5 (RTAD[4:0] and RTADP (LSB)).				

Signal Name	Function	Description
UPADDREN	Digital	This input signal is used only for 4K device options to control the function of the 4 address inputs A15 – A12. See previous descriptions for A15 – A12.
	Input	Note: For 64K devices, connecting this signal has no effect.
SLEEPIN	Digital Input	Connecting this input has no effect.
INCMD	Digital	The function of this signal depends on the value of bit 0, Configuration Register #7 (MCRST). If MCRST is logic "0", this signal functions as the output INCMD.
or	Output	INCMD is asserted low whenever a message is in progress.
		In Word Monitor mode, INCMD remains low while the mode is active.
	Digital	If MCRST bit is logic "1", this signal functions as the output \overline{MCRST} .
MCRST	Output	When in RT mode, this output will be asserted low for two clock cycles when a Reset Remote Terminal mode command is received.
		Interrupt Request.
ĪNT	Digital Output	If Configuration Register #2, bit 3 LEVEL is logic "0", the interrupt request output on INT will be a negative pulse of about 500 ns.
		If LEVEL is logic "1", the interrupt request output on INT will be a LOW continuous level. To clear the interrupt, one of following events should occur:
		1. Logic "1" should be written to bit 2 of the Start/Reset Register (INTRST); or
		 If bit 4 of Configuration Register #2 (CLRSTAT) is logic "1", then reading the Interrupt Status Register will clear INT. NOTE: In cases where both Interrupt Status Registers #1 and #2 have bits set, both registers must be read in order to clear INT.
CLOCK_IN	Digital Input	20 MHz, 16 MHz, 12 MHz, or 10 MHz clock input.
TX_INH_A	Digital Input	Transmit inhibit inputs for Bus A and Bus B, active high. These two inputs enable
TX_INH_B	Digital Input	all enabled 1553 devices.
MSTCLR	Digital Input	Master Reset, active low.
		Time Tag Clock.
TAG_CLK	Digital Input	This optional clock input may be used to increment the Time Tag Register. It is enabled by setting Bits 7, 8 and 9 of Configuration Register #2 (TTRES[9:7]) to [111].

Table 21. Miscellaneous Signals	Table 21.	Miscellaneous	Signals
---------------------------------	-----------	---------------	---------

6. Host Interface

The most commonly used host interface is the 16-bit buffered, non-zero wait mode. This configuration may be used to interface the device with a 16 or 32-bit microprocessor. In this mode the device does not access external memory and uses the internal 4K or 64K words of RAM for storing MIL-STD-1553 data and related buffering. Figure 4 and Table 22 illustrate host read timing and Figure 5 and Table 23 illustrate host write timing respectively.

6.1. Host RAM/Register Read (16-BIT Buffered, Nonzero Wait)

Note: Timing intervals not to scale. For illustration purposes only.

Figure 4. Host RAM/Register Read Timing Diagram (16-BIT Buffered, Nonzero Wait)

					Response Time				
Time	Description	Į	5V Logio	c	: 3.3V Log		ic	Units	
		Min.	Тур.	Max.	Min.	Тур.	Max.		
t1	SELECT and STRBD low setup time to clock rising edge	10			15			ns	
	SELECT and STRBD low to IOEN falling edge (No contention @ 20 MHz)			100			105	ns	
	(Contention, with Bit 14, Config. Reg #6, ENHCPU = "0" @ 20 MHz)			3.6			3.6	μs	
	(Contention, with ENHCPU = "1" @ 20 MHz)			515			520	ns	
	(No contention @ 16 MHz)			112			117	ns	
	(Contention, with ENHCPU = "0" @ 16 MHz)			4.6			4.6	μs	
t2	(Contention, with ENHCPU = "1" @ 16 MHz)			630			635	ns	
	(No contention @ 12 MHz)			133			138	ns	
	(Contention, with ENHCPU = "0" @ 12 MHz)			6.0			6.0	μs	
	(Contention, with ENHCPU = "1" @ 12 MHz)			815			820	ns	
	(No contention @ 10 MHz)			150			155	ns	
	(Contention, with ENHCPU = "0" @ 10 MHz)			7.2			7.2	μs	
	(Contention, with ENHCPU = "1" @ 10 MHz)			965			970	ns	
t3	IOEN falling edge delay from CLOCK IN rising edge.			40			40	ns	
t4	SELECT hold time from IOEN falling edge	0			0			ns	
t5	MEM / $\overline{\text{REG}}$ and RD / $\overline{\text{WR}}$ setup time to CLOCK IN falling edge	10			15			ns	
t6	MEM / $\overline{\text{REG}}$ and RD / $\overline{\text{WR}}$ hold time from CLOCK IN falling edge	30			30			ns	
t7	Address valid setup time to CLOCK IN rising edge	30			35			ns	
t8	Address valid hold time from CLOCK IN rising edge	30			30			ns	
			Response Time						
------	---	------	---------------	------	------	---------	------	-------	--
Time	Description	ų	5V Logio	;	3	.3V Log	ic	Units	
		Min.	Тур.	Max.	Min.	Тур.	Max.		
	IOEN falling edge delay to READYD falling edge (@ 20 MHz)	135	150	165	135	150	165	ns	
t9	(@ 16 MHz)	170	187.5	205	170	187.5	205	ns	
	(@ 12 MHz)	235	250	265	235	250	265	ns	
	(@ 10 MHz)	285	300	315	285	300	315	ns	
	Output Data valid to READYD falling edge (@ 20 MHz)	21			11			ns	
t10	(@ 16 MHz)	33			23			ns	
	(@ 12 MHz)	54			44			ns	
	(@ 10 MHz)	71			61			ns	
t11	READYD falling edge delay from CLOCK IN rising edge.			40			40	ns	
t12	READYD falling edge to STRBD rising edge			8			8	ns	
t13	STRBD rising edge delay to IOEN and READYD rising edge			30			40	ns	
t14	Output Data hold time from STRBD rising edge	0			0			ns	
t15	STRBD rising edge delay to output data tri-state			40			40	ns	
t16	STRBD high hold time from READYD rising edge	0			0			ns	
t17	CLOCK IN rising edge delay to output data valid			40			40	ns	

6.2. Host RAM/Register Write (16-BIT Buffered, Nonzero Wait)

Note: Timing intervals not to scale. For illustration purposes only.

Figure 5. Host RAM/Register Write Timing Diagram (16-BIT Buffered, Nonzero Wait)

Table 23.	Host RAM/Register	Write Timing	(16-BIT Buff	ered, Nonzero Wait)
-----------	-------------------	--------------	--------------	---------------------

				Respon	se Time	•		
Time	Description		5V Logi	C	3	.3V Log	ic	Units
		Min.	Тур.	Max.	Min.	Тур.	Max.	
t1	SELECT and STRBD low setup time to clock rising edge	10			15			ns
	SELECT and STRBD low to IOEN falling edge (No contention @ 20 MHz)			100			105	ns
	(Contention, with Bit 14, Config. Reg #6, ENHCPU = "0" @ 20 MHz)			3.6			3.6	μs
	(Contention, with ENHCPU = "1" @ 20 MHz)			465			470	ns
	(No contention @ 16 MHz)			112			117	ns
	(Contention, with ENHCPU = "0" @ 16 MHz)			4.6			4.6	μs
t2	(Contention, with ENHCPU = "1" @ 16 MHz)			565			570	ns
	(No contention @ 12 MHz)			133			138	ns
	(Contention, with ENHCPU = "0" @ 12 MHz)			6.0			6.0	μs
	(Contention, with ENHCPU = "1" @ 12 MHz)			732			737	ns
	(No contention @ 10 MHz)			150			155	ns
	(Contention, with ENHCPU = "0" @ 10 MHz)			7.2			7.2	μs
	(Contention, with ENHCPU = "1" @ 10 MHz)			865			870	ns
t3	IOEN falling edge delay from CLOCK IN rising edge.			40			40	ns
t4	SELECT hold time from IOEN falling edge	0	1		0			ns
t5	MEM / $\overline{\text{REG}}$ and RD / $\overline{\text{WR}}$ setup time to CLOCK IN falling edge	10			15			ns
t6	MEM / $\overline{\text{REG}}$ and RD / $\overline{\text{WR}}$ hold time from CLOCK IN falling edge	30			35			ns
t7	Address valid setup time to CLOCK IN rising edge	30			35			ns
t8	Data valid setup time to CLOCK IN rising edge	10			15			ns
t9	Address valid hold time from CLOCK IN rising edge	30			30			ns

Host Interface

			Response Time							
Time	Description	5V Logic			3.3V Logic			Units		
		Min.	Тур.	Max.	Min.	Тур.	Max.			
t10	Data valid hold time from CLOCK IN rising edge	10			15			ns		
	IOEN falling edge delay to READYD falling edge (@ 20 MHz)	85	100	115	85	100	115	ns		
t11	(@ 16 MHz)	110	125	140	110	125	140	ns		
	(@ 12 MHz)	152	167	182	152	167	182	ns		
	(@ 10 MHz)	185	200	215	185	200	215	ns		
t12	READYD falling edge delay from CLOCK IN rising edge.			40			40	ns		
t13	READYD falling edge to STRBD rising edge			∞			∞	ns		
t14	STRBD rising edge delay to IOEN and READYD rising edge			30			40	ns		
t15	STRBD high hold time from READYD rising edge	10			10			ns		

6.3. Host RAM/Register Read (Transparent Mode)

Note: Timing intervals not to scale. For illustration purposes only.

Figure 6. Host RAM/Register Read Timing Diagram (Transparent Mode)

				Respon	se Time	I		
Time	Description	ų	5V Logio	c	3.	3V Log	ic	Units
		Min.	Тур.	Max.	Min.	Тур.	Max.	
t1	SELECT and STRBD low setup time to clock rising edge	10			15			ns
	SELECT and STRBD low to IOEN falling edge (No contention @ 20 MHz)			100			105	ns
	(Contention @ 20 MHz)			3.6			3.6	μs
	(No contention @ 16 MHz)			112			117	ns
t2	(Contention @ 16 MHz)			4.6			4.6	μs
	(No contention @ 12 MHz)			133			138	ns
	(Contention @ 12 MHz)			6.0			6.0	μs
	(No contention @ 10 MHz)			150			155	ns
	(Contention @ 10 MHz)			7.2			7.2	μs
t3	IOEN falling edge delay from CLOCK IN rising edge.			40			40	ns
t4	SELECT hold time from IOEN falling edge				0			ns
t5	MEM / REG and RD / WR setup time to CLOCK IN falling edge				15			ns
t6	MEM / $\overline{\text{REG}}$ and RD / $\overline{\text{WR}}$ hold time from CLOCK IN falling edge	30			30			ns
t7	Address valid setup time to CLOCK IN rising edge	30			35			ns
t8	Address valid hold time from CLOCK IN rising edge	30			30			ns
	IOEN falling edge delay to READYD falling edge (@ 20 MHz)	185	200	215	185	200	215	ns
t9	(@ 16 MHz)	235	250	265	235	250	265	ns
	(@ 12 MHz)	315	333	350	315	333	350	ns
	(@ 10 MHz)	385	400	415	385	400	415	ns
t10	READYD falling edge delay from CLOCK IN rising edge.			40			40	ns
t11	READYD falling edge to STRBD rising edge			5.0			5.0	μs
t12	STRBD rising edge delay to IOEN and READYD rising edge			30			40	ns

Table 24. Host RAM/Register Read Timing (Transparent Mode)

	Time Description		Response Time						
Time			5V Logic			3.3V Logic			
		Min.	Тур.	Max.	Min.	Тур.	Max.		
t13	Output Data hold time from STRBD rising edge	0			0			ns	
t14	STRBD rising edge delay to output data tri-state			40			40	ns	
t15	STRBD high hold time from READYD rising edge	0			0			ns	
t16	CLOCK IN rising edge delay to output data valid			40			40	ns	
t17	CLOCK IN rising edge delay to DTACK falling edge			40			40	ns	
t18	MEMENA_IN setup time to CLOCK IN rising edge	10			10			ns	
t19	MEMENA_IN hold time from CLOCK IN rising edge	30			30			ns	
t20	CLOCK IN rising edge delay to MEMOE falling edge			40			40	ns	

6.4. Host RAM/Register Write (Transparent Mode)

Note: Timing intervals not to scale. For illustration purposes only.

Figure 7. Host RAM/Register Write Timing Diagram (Transparent Mode)

				Respon	se Time)		
Time	Description	ų	5V Logio	c	3	.3V Log	ic	Units
		Min.	Тур.	Max.	Min.	Тур.	Max.	
t1	$\overline{\text{SELECT}}$ and $\overline{\text{STRBD}}$ low setup time to clock rising edge	10			15			ns
	SELECT and STRBD low to IOEN falling edge (No contention @ 20 MHz)			100			105	ns
	(Contention @ 20 MHz)			3.6			3.6	μs
	(No contention @ 16 MHz)			112			117	ns
t2	(Contention @ 16 MHz)			4.6			4.6	μs
	(No contention @ 12 MHz)			133			138	ns
	(Contention @ 12 MHz)			6.0			6.0	μs
	(No contention @ 10 MHz)			150			155	ns
	(Contention @ 10 MHz)			7.2			7.2	μs
t3	IOEN falling edge delay from CLOCK IN rising edge.			40			40	ns
t4	SELECT hold time from IOEN falling edge				0			ns
t5	MEM / REG and RD / WR setup time to CLOCK IN falling edge				15			ns
t6	MEM / $\overline{\text{REG}}$ and RD / $\overline{\text{WR}}$ hold time from CLOCK IN falling edge	30			30			ns
t7	Address valid setup time to CLOCK IN rising edge	30			10			ns
t8	Address valid hold time from CLOCK IN rising edge	30			25			ns
	IOEN falling edge delay to READYD falling (@ 20 MHz)	185	200	215	185	200	215	ns
t9	(@ 16 MHz)	235	250	265	235	250	265	ns
	(@ 12 MHz)	315	333	350	315	333	350	ns
	(@ 10 MHz)	385	400	415	385	400	415	ns
t10	READYD falling edge delay from CLOCK IN rising edge.			35			30	ns
t11	READYD edge falling to STRBD rising edge			5.0			5.0	μs
t12	STRBD rising edge delay to IOEN and READYD rising edge			30			35	ns

Table 25. Host RAM/Register Write Timing (Transparent Mode)

Host Interface

				Respon	se Time	•		
Time	Description		5V Logi	С	3	.3V Log	ic	Units
		Min.	Тур.	Max.	Min.	Тур.	Max.	
t13	Data setup time to CLOCK IN rising edge	10			10			ns
t14	Data hold time from CLOCK IN rising edge	30			25			ns
t15	STRBD high hold time from READYD rising edge	0			0			ns
t16	CLOCK IN rising edge delay to MEMOE rising edge			30			30	ns
t17	7 CLOCK IN rising edge delay to DTACK falling edge			35			30	ns
t18	MEMENA_IN setup time to CLOCK IN rising edge	5			10			ns
t19	MEMENA_IN hold time from CLOCK IN rising edge	30			25			ns
t20	CLOCK IN rising edge delay to MEMOE falling edge			40			30	ns
	MEMOE low pulse width	27		62	27		62	20
	(@ 20 MHz)	37		02	57		02	ns
t21	(@ 16 MHz)	50		75	50		75	ns
	(@ 12 MHz)	70		95	70		95	ns
	(@ 10 MHz)	87		112	87		112	ns

7. Electrical Characteristics

7.1. Absolute Maximum Ratings

	Logic	-0.3 V to +6.0 V		
Supply voltages	Transceivers (not transmitting)	-0.3 V to +6.0 V		
	Transceivers (transmitting)	-0.3 V to +4.5 V		
Logic input voltage range		-0.3 V to +6.0 V		
Receiver differential voltage		10 Vp-р		
Solder Temperature (reflow)		245°C		
Junction Temperature		175°C		
Storage Temperature		-65°C to +150°C		

7.2. Recommended Operating Conditions

Deren	Parameters					
Paran					Unit	
	Logic	3.0	3.3	5.5	V	
Supply Voltages	3.3V Transceivers	3.14	3.3	3.46	V	
	5.0V Transceivers	4.75	5.0	5.25	V	
Tomporaturo Dongo	Industrial	-40		85	°C	
remperature Range	Extended	-55		125	°C	

7.3. DC Electrical Characteristics

 T_A = Operating Temperature Range

					Limits		
Paramete	rs	Symbol	Conditions	Min	Тур	Max	Unit
Power Supply							
	Logic	V _{Logic}		3.0	3.3	5.5	V
Operating Supply Voltages	3.3V Transceivers	V _{DD}		3.14	3.3	3.46	V
	5.0V Transceivers	V _{DD}		4.5	5.0	5.5	V
		I _{CC1}	Not Transmitting	-	10	15	mA
Power Supply Current HI-621x5PBx HI-62106PBx HI-621x5CQx See Note 1	V _{LOGIC} = 3.3V	I _{CC2}	Continuous supply current while one bus transmits @ 50% duty cycle, 70Ω resistive load	-	295	330	mA
		I _{CC23}	Continuous supply current while one bus transmits @ 100% duty cycle, 70Ω resistive load	-	560	600	mA
Devers Querche Quercet	$V_{LOGIC} = 3.3V = V_{DD}$	I _{cc1}	Not Transmitting	-	10	15	mA
HI-621x3PBx HI-621x3CQx HI-621x4CQx See Note 1		I _{CC2}	Continuous supply current while one bus transmits @ 50% duty cycle, 70Ω resistive load	-	335	410	mA
		I _{CC23}	Continuous supply current while one bus transmits @ 100% duty cycle, 70Ω resistive load	-	630	760	mA
Power Dissipation		PD ₁	Not Transmitting	-	-	60	mW
HI-621x5PBx HI-62106PBx	V _{LOGIC} = 3.3V V = 5.0V	PD ₂	Transmit one bus @ 50% duty cycle, 70Ω resistive load	-	1.0	1.1	W
HI-621x5CQx See Note 2		PD ₃	Transmit one bus @ 100% duty cycle, 70Ω resistive load	-	1.45	1.55	W
Power Dissipation		PD ₁	Not Transmitting	-	-	60	mW
HI-621x3PBx HI-621x3CQx	$V_{LOGIC} = 3.3V = V_{DD}$	PD ₂	Transmit one bus @ 50% duty cycle, 70Ω resistive load	-	320	470	mW
HI-621x4CQx See Note 3		PD ₃	Transmit one bus @ 100% duty cycle, 70Ω resistive load	-	450	620	mW
Logic							
Innut Voltage (Lligh)			All digital inputs, except CLK _{IN}	2.1	-	-	V
		V _{IH}	CLK	0.8			V _{DD}
			All digital inputs, except CLK	-	-	0.7	V
		V _{IL}				0.2	V _{DD}

Demonster		Oursehal	Openditions		Limits		11
Parameter	'S	Symbol	Conditions	Min	Тур	Мах	Unit
			All digital inputs, except CLK _{IN} ,				
			$V_{LOGIC} = 3.6V = V_{IH}$	-10	-	-10	μA
lanut Current (Link)			V_{LOGIC} = 3.6V, V_{IH} = 2.7V	-350	-	-33	μA
Input Current (Hign)		I _{IH}	$V_{LOGIC} = 5.25V = V_{IH}$	-10	-	-10	μA
			V_{LOGIC} = 5.25V, V_{IH} = 2.7V	-350	-	-50	μA
			CLK	-10	-	10	μA
			All digital inputs, except $CLK_{_{\mathrm{IN}}}$,				
Input Current (Low)			$V_{LOGIC} = 3.6V, V_{IL} = 0.4V$	-350	-	-33	μA
		IL.	$V_{LOGIC} = 5.25V, V_{IL} = 0.4V$	-350	-	-50	μA
			CLK	-10	-	10	μA
Output) (alterna (1 liak)			$V_{LOGIC} = 3.0V, V_{IH} = 2.7V, V_{IL} = 0.2V, I_{OH} = max$	2.4	-	-	V
Output voitage (Hign)		V _{oh}	$V_{LOGIC} = 4.5V, V_{IH} = 2.7V, V_{IL} = 0.2V, I_{OH} = max$	2.4	-	-	V
			$V_{LOGIC} = 3.0V, V_{IH} = 2.7V, V_{IL} = 0.2V, I_{OL} = max$	-	-	0.4	V
Output Voltage (Low)		V _{OL}	$V_{LOGIC} = 4.5V, V_{IH} = 2.7V, V_{IL} = 0.2V, I_{OL} = max$	-	-	0.4	V
		I _{он}	V _{LOGIC} = 3.0V	-	-	-2.2	mA
Output Current (High)			V _{LOGIC} = 4.5V	-	-	-3.4	mA
			V _{LOGIC} = 3.0V	2.2	-	-	mA
Output Current (Low)		I _{OL}	V _{LOGIC} = 4.5V	3.4	-	-	mA
RECEIVER (Measured at Point "A	D" in Figure 10 unless	otherwise s	pecified)				
		D	V _{DD} = 3.3V	2.4	-	-	kΩ
Differential Input Resistance		R _{IN}	V _{DD} = 5.0V	2.0			kΩ
Differential Input Capacitance		C _{IN}	Measured between pins TX/RX-A(B) and TX/RX-A(B). V_{DD} = 5.0V or 3.3V	-	-	35	pF
Common Mode Rejection Ratio		CMRR		40	-	-	dB
Input Level		V _{IN}	Differential	-	-	9	Vp-p
Input Common Mode Voltage		V _{ICM}		-10	-	+10	V-pk
Threshold Voltage	Detect	V _{THD}	1 MHz Sine Wave (Measured at	1.2	-	20.0	Vp-p
(Direct-Coupled)	No Detect	V _{THND}	Point "AD" in Figure 10)	-	-	0.28	Vp-p
	Detect	V _{THD}	1 MHz Sine Wave (Measured at	0.86	-	14.0	Vp-p
Threshold Voltage (Transformer-Coupled)	No Detect	V _{THND}	Point "AT" in Figure 11)	-	-	0.2	Vp-p

		Symbol		Limits						
Parameter	Conditions		Min	Тур	Мах	Unit				
TRANSMITTER (Measured at Point "AD" in Figure 10 unless otherwise specified)										
Output Voltage	Direct Coupled	V _{OUT}	35Ω Load	6.0	7.0	9.0	Vp-р			
	Transformer Coupled	V _{out}	70Ω Load (Measured at Point "AT" in Figure 11)	20.0	21.5	27.0	Vp-p			
Output Noise		V _{on}	Differential, Direct Coupled	-	-	14.0	mVp-p			
Output Dynamic Offset Voltage	Direct Coupled	V _{dyn}	35Ω Load	-90	-	90	mV			
	Transformer Coupled	V _{dyn}	70Ω Load (Measured at Point "AT" in Figure 11)	-250	-	250	mVp			
Rise/Fall Time	HI-621x3xxx HI-621x5xxx	t _{r/f}	MIL-STD-1553B compliant	100	150	300	ns			
	HI-62106PBx HI-621x4CQx	t _{r/f}	McAir compliant	200	250	300	ns			
Output Resistance		R _{out}	Differential, not transmitting	10	-	-	kΩ			
Output Capacitance		C _{OUT}	1 MHz sine wave	-	-	15	pF			
Clock Input										
	(Default)	CLK _{IN}			16.0		MHz			
Frequency	(option)				12.0		MHz			
	(option)				10.0		MHz			
	(option)				20.0		MHz			
MIL-STD-1553 Message Timing										
Completion of CPU write (BC Start) to Start of First Message for non-Enhanced BC Mode					2.5		μs			
BC intermessage gap time (typical value; may be lengthened under software control to 65.535 ms)			non-Enhanced BC Mode		9.5		μs			
			Enhanced BC Mode		10.5		μs			
			18.5 nominal	17.5	18.0	19.5	μs			
BC/RT/MT Response Timeout			22.5 nominal	21.5	22.5	23.5	μs			
(Software programmable, 4 options)			50.5 nominal	49.5	50.5	51.5	μs			
			128.0 nominal	127.0	129.5	131.0	μs			
RT Response Time (mid-parity to mid-sync)				4		7	μs			
Transmitter Watchdog Timeout					660.5		μs			

Note 1: In actual use, the highest practical transmit duty cycle is 96%, occurring when a Remote Terminal responds to a series of 32 data word transmit commands (RT to BC) repeating with minimum intermessage gap of 4µs (2µs dead time) and typical RT response delay of 5µs.

Note 2: While one bus continuously transmits, the power delivered by the 5.0V power supply is $5.0V \times 560$ mA typical = 2.8W. Of this, 1.45W is dissipated in the device, the remainder in the load.

Note 3: While one bus continuously transmits, the power delivered by the 3.3V power supply is $3.3V \times 630$ mA typical = 2.1W. Of this, 450mW is dissipated in the device, the remainder in the load.

7.4. MIL-STD-1553 Bus Interface

Figure 8. Bus Connection Example – 3.3V Transceivers

Figure 9. Bus Connection Example - 5.0V Transceivers

7.5. MIL-STD-1553 Test Circuits

Figure 10. MIL-STD-1553 Direct Coupled Test Circuits

Each Bus

Figure 11. MIL-STD-1553 Transformer Coupled Test Circuits

8. Package Dimensions

Dimensions: inches (mm)

Figure 12. Ball Grid Array Package Dimensions (BGA-324)

Figure 13. 80-Pin Gull Wing Package Dimensions

Figure 14. 80-Pin Flat Pack Package Dimensions

9. Ordering Information – 324 Ball BGA Package

10. Ordering Information – 80 Pin Gull Wing Package

HI - <u>621 x x Cx x x</u>	
Blank	= Leaded, non-RoHS compliant ¹
F	= RoHS compliant
	= -40° C to $+85^{\circ}$ C
Т	$= -55^{\circ}C \text{ to } +125^{\circ}C$
M	= -55° C to $+125^{\circ}$ C with burn-in
R	 Same as M, MIL-PRF compliant
D	= Same as R, with PIND testing
CQ	= Ceramic 80-pin gull wing package
CF	= Ceramic 80-pin flat pack package
3	= 3.3V Transceiver supply voltage – 1553B rise/fall times
4	= 3.3V Transceiver supply voltage – 1553B and McAir rise/fall times
5	= 5.0V Transceiver supply voltage – 1553B rise/fall times
0	= BC/MT/RT, 64K x 17 bit word RAM capacity
1	= BC/MT/RT, 4K x 16 bit word RAM capacity
2	= RT only, 4K x 16 bit word RAM capacity

Note 1: Solder dipped, Sn/Pb solder

11. Revision History

Revision Date		Date	Description of Change		
DS6210,	Rev. New	05/23/18	Initial Release		
	А	07/02/18	Add BGA ball metallurgy to Ordering Information		
		05/20/19	Add package photos to title page.		
В	Add minor clarification to RTBOOT signal description (enables MIL-STD-1760 operation).				
	Add dimension units to package drawings.				
C 08/01/19 Update paramet measurements.		08/01/19	Update parameters in Electrical Characteristics to align with electrical measurements. Update Reflow Temperature.		
D		11/08/19	Add more detail to register definitions and block diagram.		
	D		Add pin diagrams, clarify pin descriptions, update host interface timing diagrams.		
		Add flat pack package option.			
			Other minor updates and corrections.		
E			Add Transparent Mode read and write timing diagrams.		
	12/17/19	Update Buffered Mode read and write timing diagrams. READYD falling edge and related timings shown one clock period earlier. Parameter table values remain unchanged.			